Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3612
標題: 氧化鋯擔持銅/氧化鋅奈米觸媒之製備及其在甲醇蒸汽重組反應之應用
Preparation of Nanocatalyst Cu/ZnO Supported on Zirconia and Its Application on Steam Reforming of Methanol
作者: 李銘峰
Li, Ming-feng
關鍵字: steam reforming of methanol
甲醇蒸汽重組
weight hourly space velocity
promoter
precursors
分散劑
擔體
重量空間流速
鍛燒
出版社: 化學工程學系所
引用: [1]M-C. Tsai, T.-K. Yeh, C-H Tasi, “An improved electrodeposition technique for preparing platinum and platinum-ruthenium nano-particles on carbon nano-tubes directly grow on carbon cloth for methanol oxidation”, Electrochemistry Comunicaitons, 8 (2006) 1445-1452 [2]K. Takeda, A. Baba, Y. Hishinuma, T. Chikahisa, “Performance of methanol reforming system for a fuel cell powered vehicle and system evaluation of a PEFC system”, JSAEReview, 23 (2002) 183-188 [3]G. T. Wu, C. S. Wang , “Lithium insertion into CuO/carbon nanotubes ”, Journal of power sources, 75 (1998) 175-179 [4]X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan,“Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell”, Journal of Power Sources, 158 (2006) 154-159 [5]J. Xu, H. Kaifeng, G. Sun, C. Wang, X. Lv, Y. Wang, “Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode”,Electrochemistry Communications, 8 (2006) 982-986 [6]K-J. Kong , C. Youngmin, B-H. Ryu, J-O Lee, H. Chang, “Investigation of metal/carbon-related materials for fuel cell application by electronic structure calculations”, Materials Science and Engineering C, 26 (2006) 1207-1210 [7]D. Klisurski, “Relationship between the Selectivity and Activity of Oxide catalyst in the oxidation of methanol and the initial temperature of their reaction”, Kinet. Katal, 11 (1970) 263(1) [8]L. Alejo, R. Lago, M. A. Peña, J. L. G. Fierro, “Partical oxidation of methanol to productce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A:, 162 (1997) 281-297 [9]A.P. Tsai, M. Yoshimura, “Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol”,Applied Catalysis A, 214 (2001) 237-241 [10]B. Lindström, L. J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell application”, Interational Juranol of Hydrogen Energy , 26 (2001) 923-933 [11]Z. Wang, J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, Journal of Molecular Caatalysis A, 191 (2003) 123-134 [12]S. Liu, K. Takahashi, M. Ayabe, “Hydorgen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of Pd loading” , Catalysis Today, 87 (2003) 247-253 [13]Y. Suwa, S.-I. Ito, S. Kameoka, K. Tomishige, K. Kunimori , “Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol”,Applied Catalysis A, 267 (2004) 9-16 [14]J. P. Breen , J. R. H. Ross, “Methanol reforming for fuel-cell applications : development of zirconia-containing Cu-Zn-Al catalysts”, Catalysis Today, 51 (1999) 521-533 [15]B. Lindström, L. J. Pettersson, P. G. Menon, “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on -alumina for methanol reforming for fuel cell vehicles”, Applied Catalysis A:, 234 (2002) 111-125 [16]W.h Cheng.“Reaction and XRD studies on Cu based methanol decomposition catalysts : Role of constituents and development of high activity multicomponent”, Applied Catalysis A, 130 (1995) 13-19 [17]J. Agrell, M. Boutonnet, J. L. G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part Ⅱ. Catalytic activity and reaction pathway”, Applied Catalysis A, 253 (2003) 213-223 [18]P. H. Matter, D. J. Braden, U. S. OzKan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO”, Journal of catalysis, 223 (2004) 340-351 [19]Y.-F. Li, X.-F Dong, W.-M. Lin, “Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol”, International Jouranal of Hydrogen Energy, 29 (2004) 1617-1621 [20]A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications”, Applied Catalysis B, Environmental 37 (2002), 17-25 [21]S. Liu, K. Takahashi, M. Ayabe, “Hydorgen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of Pd loading”, Catalysis Today , 87 (2003) 247-253 [22]G. M. Spinks, S.S. Ryon, G. G. Wallace, P. G. Whitten, S. J. K. Sun, I. Kimb, “Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion”, Sensors and Actuators B, 115 (2006) 678-684 [23]Q.-C. Xu, J.-D., J. Li, X.-Z. Fu, Z.-W. Yang, W.-M. Guo, D.-W. Liao, “Combination and interaction of ammonia synthesis ruthenium catalysis”, Journal of molecular catalysis A Chemical, 259 (2006) 218-222 [24]P. H. Matter, U. S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, Journal of Catalysis, 234 (2005) 463-475 [25]C.-Z. Yao, L.-C. Wang, Y.-M. Liu, G.-S. Wu, C. Yong,W.-L Dai, H.-Y. He, “Deposition precipitation of carbon nanofiber supported Nickel catalysts”, Journal of American chemical society, 127 (2005) 13573-135882 [26]C.-Z. Yao, L.-C. Wang, Y.-M. Liu, G.-S. Wu, Y. Cao, W.-L. Dai, H.-Y. He, K.-N. Fan, “Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts”, Applied Catalysis A:, 297 (2006) 151-158 [27]M. Wang, K.-D.Woo, D.-K. Kim, “Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method”, Engergy Conversion and Management, 47 (2006) 3235-3240 [28]I.I. Štefanc, Š. Music, G. Štefanic, A. Gajovic, “Thermal behavior of ZrO2 precursors obtained by sol-gel processing”, Journal of Molecular Structure, 408-481 (1999) 621-625 [29]H. Li, J. Wang, “Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process”, Chemical Engineering Science, 59 (2004) 4861- 4867 [30]R. D. Gonzalez , T. Lopez, R. Gomez, “Sol-Gel preparation of supported metal catalysts”, Catalysis Today, 35 (1997) 293-317 [31]N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catalysis Today, 36 (1997) 45-56
摘要: 本論文之研究目的為製備出奈米結構之氧化鋯,將銅與氧化鋅擔持於其表面,運用在甲醇蒸汽重組反應上。擔體條件之變數包含有不同溶劑的選用、不同H2O與Zr(OC3H7)4之莫耳數比、磁石攪拌與超音波攪拌的比較、鍛燒溫度的不同、添加不同分散劑。甲醇蒸汽重組反應之變數包括有不同H2O與CH3OH之莫耳數比、重量空間速度(Weight Hourly Space Velocity)、銅之含量、氧化鋅之含量以及觸媒活性測試。 實驗結果顯示,氧化鋯之顆粒大小會與選用之溶劑、H2O與Zr(OC3H7)4之莫耳數比、以正丙醇為溶劑之正丙氧基鋯之濃度、攪拌方式、鍛燒溫度及分散劑有關。添加不同分散劑也會影響到觸媒孔洞的大小。製備奈米粒子氧化鋯擔體之最適化條件如下:以正丙醇當正丙氧基鋯之溶劑、使用超音波震盪、溫度在400 ℃下鍛燒五小時及使用溴化十六烷基三甲基四級胺鹽(CTAB)當擔體的分散劑。 使用氧化鋅加入Cu/ZrO2中當促進劑時,在甲醇蒸汽重祖產氫的過程中,可以大幅的提升甲醇的轉化率與氫氣的產率。在觸媒中添加銅,會使得觸媒在甲醇蒸汽重組中有較高活性,而在甲醇蒸汽重組反應中,添加14%之活性金屬銅與5%氧化鋅有最好的反應效果。當我們使用Cu/ZnO/ZrO2(14 % Cu,5 % ZnO)觸媒時,在水與甲醇莫耳數比例為1.3的情形下,360℃之氫氣產率已達96%以上。更高之氫氣產率、二氧化碳選擇率與較低之一氧化碳濃度都可以在裡面觀察到。以分序製備出之觸媒,在10小時的活性測試過程中,有很良好的穩定性,氫氣產率經過10小時的操作後約維持在82%,二氧化碳選擇率均在99%以上,一氧化碳體積濃度約為0.06~0.22%。另外以同步製備出Cu/ZnO/ZrO2 所獲得氫氣產率比分序製備低上許多,雖然氫氣產率約為20%,但是二氧化碳之選擇率維持在92%以上。
In the dissertation, the purpose of this study is to prepare nanocatalyst Cu/ZnO supported on Zirconia and to apply it on steam reforming of methanol. The operating parameters, including the choice of the solvent, the molar ratio of H2O to Zr(OC3H7)4, the difference between agitation and ultrasound, the concentration of Zr(OC3H7)4 dissolved in n-propanol and the temperature of calcination, were all performed to find the optimal preparation conditions. The operatiy parameters of methanol steam reforming were included the weight hourly space velocity, the H2O/CH3OH molar ratio, the amount of copper, the amount of ZnO and time-on-stream activity testing. The results show that the particle size of ZrO2 is related to the of choice the solvent, the molar ratio of H2O to Zr(OC3H7)4, the concentration of Zr(OC3H7)4 dissolved in n-propanol, the stirring method, the temperature of calcinations and the addition of dispersant. And adding the dispersant influenced the pore size of catalyst. The optimum operating conditions were obtained, the n-propanol as solvent, the molar ratio of H2O to Zr(OC3H7)4 is 0.25M of the concentration of 4.5 Zr(OC3H7)4 dissolved in n-propanol with ultrasound agitation,400℃ of the calcinations temperature for 5 hours and the CTAB as the dispersant for the support. When ZnO-promoter was added to Cu/ZrO2 catalyst ,the methanol conversion and H2 yield improved greatly by methanol steam reforming. The catalyst with active Cu metal shows higher activity for the reaction of methanol steam reforming and the best weight ratio of Cu/ZnO/ZrO2 was 14/5/81. Using Cu/ZnO/ZrO2 as the catalyst, we obtained the hydrogen yield to be 96.44% at 320℃ with 1.3 of molar ratio of water to methanol. The higher hydrogen production, higher selectivity of CO2 and lower CO concentration were also observed. 10-hour duration of test for Zr-1 catalyst showed that the catalyst had good stability with H2 yield kept at 82 % and CO2 selectivity > 99 % , and CO Vol % 0.06-0.22 %. But another method of simultaneous adding Cu and ZnO precursors for the preparation Cu/ZnO/ZrO2 (Zr-2) obtained the H2 yield much lower than with by which Zr-1. H2 yield was kept at 20 %, and CO2 selectivity >92%
URI: http://hdl.handle.net/11455/3612
其他識別: U0005-0507200710032700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507200710032700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.