Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3613
標題: 金屬氧化物擔持於ZSM-5觸媒之製備與特性分析研究
Synthesis and Characterization of Supported Metal Oxide on ZSM-5 Catalysts
作者: 吳俊寬
Wu, Jun-Kuan
關鍵字: ZSM-5
ZSM-5
catalyst
metal oxide
zeolite
methane dehydroaromatisation
觸媒
金屬氧化物
沸石
甲烷芳構化
出版社: 化學工程學系所
引用: [1] Wei Liu and Yide Xu, Journal of Catalysis 185, 386-392, 1999. [2] Hongmei Liu, Wenjie Shen, Xinhe Bao, Yide Xu, Applied Catalysis A: General 295, 79-88, 2005. [3] Jean-Philippe Tessonnier, Benoit Louis et al. J. Phys. Chem. B, 110, 10390-10395, 2006. [4] S. Burns et al. Catalysis Today 114, 383-387, 2006. [5] S. Kikuchi et al. Journal of Catalysis 242, 349-356, 2006. [6] S. Burns et al. Journal of Molecular Catalysis A: Chemical 245,141-146, 2006. [7] E. W. Hansen, M. Stocker, and R. Schmidt, J. Phys. Chem. 100, 2195, 1996. [8] A. Corma, Chem. Rev. 97, 2373, 1997. [9] D. W. Breck, “Zeolite Molecular Sieves” Wiley, New York, 1974. [10] D. W. Breck, J. Chem. Educ. 41, 678, 1964. [11] P. H. Emmett, S. Brunauer, J. Am. Chem. Soc. 59, 1553, 1993. [12] R. J. Arguar, G. R. Landolt, U. S. Paten, 3, 702, 886, 1972. [13] E. G. Derouane, Stud. Surf. Sci. Catal. 5, 5, 1980. [14] W. Jame, J. Catal. 76, 433, 1982. [15] J. C. Vedrine, A. Auroux, V. Bolis, P. Dejaifev, C. Naccache, P. Wierchowski, E. G. Derouane, J. B. Nagy, J. P. Gilson, J. P. Wolthuizen, J. Catal. 59, 248, 1979. [16] V. Penchev, C. Minchev, V. Kanazirev, O. Pencheva, L. Borisova, H. Lechert, H. Kacirek, Zeolites 3, 249, 1983. [17] P. B. Weisz, “The 7th International Congress on Catalysis” Tokyo, P.1, 1980. [18] S. M. Csicsery, Zeolites 4, 202, 1984. [19] N. Y. Chen, W. E. Garwood, Catal. Rev. Sci. Eng, 28, 185, 1986. [20] K. Tanabe, “Solid Acids and Bases” Academic Press, New York, 1970. [21] H. A. Benesi, and B. H. C. Winquist, Adv. Catal. 27, 97, 1978. [22] E. G. Derouane, J. G. Fripiat, Zeolites, 5, 165, 1985. [23] W. Zhang et al. Journal of Molecular Catalysis A: Chemical 194, 112, 2003. [24] 吳榮宗,“工業觸媒概論”,國興出版社,1989。 [25] Pinna F. “Supported metal catalysts preparation”, Catalysis Today, 41, 129-137, 1998. [26] 李秉傑,邱宏明,王奕凱(譯),“非均勻系催化原理與應用”,渤海堂文化事業,台北市,1988年2月初版。 [27] 齊隨濤,楊伯倫,現代化工,第22卷第08期,p.13-16,2002 [28] 劉社田,李小云等,河北省科學院學報,第3期,p.23,1996 [29] 謝茂松,石油化工,第8期,579-589,1996 [30] G. Ertl, H. Knözinger, J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol 3, VCHD-69451 Weinheim, 1508, 1997. [31] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1993。 [32] J. W. Olesik, Anal. Chem., 68, 469A, 1996. [33] C. Daniel Harris, “Quantitative Chemical Analysis” (3rd Edition), 1991. [34] M. L. Hair, “Infrared Spectroscopy in Surface Chemistry”, 1976. [35] V. A. Kiselev, “Infrared Spectra of Surface Compounds”, 1975. [36] H. L. Little, “Infrared Spectra of Adsorbed Species”, 1996. [37] B. Li et al. Microporous and Mesoporous Materials 88, 246, 2006. [38] C. N. Satterfield, “Heterogeneous Catalysis in Practice”, p.126, McGraw-Hill, New York, 1980. [39] S. Liu et al. Journal of Catalysis 181, 182, 1999. [40] V. Mavrodinova et al. Applied Catalysis A: General 248, 200-201, 2003.
摘要: 本研究以不同矽/鋁原子比之ZSM-5擔體,分別擔持3% 氧化釩、鉻、鉬、鎢與錸五種金屬氧化物為活性相。以BET、XRD、ICP-AES、FT-IR對其做特性分析,並運用拉曼(Raman)光譜對擔持金屬氧化物之觸媒做表面結構的分析,以瞭解表面金屬氧化物之動態變化。 其中XRD雖然有其偵測極限,然而在小角度的繞射峰位,顯示金屬氧化物進入孔道之內;Raman光譜則顯示隨著矽/鋁比的增加,觸媒上的金屬逐漸形成結晶。可知擔體矽/鋁比會影響金屬氧化物的分散性;由FT-IR可知隨著矽/鋁比的遞增,H-ZSM-5結構中較少的Si4+被Al3+取代,路易士酸有逐漸遞減的趨勢。藉由UV-Raman圖譜可知3% MoOX/ZSM-5-15具有Monooxo-MoO4與Dioxo-MoO4物種結構;而2%MoOX/ZSM-5-140具有Dioxo-MoO4物種結構。在甲烷芳構化反應中,苯必須在Monooxo-MoO4物種被甲烷完全還原後才可以開始生成,證明表面Mo是造成苯生成的主要因素。
Various Si/Al atom ratios of ZSM-5 were used as supports to support five different metal oxides such as V2O5, CrO3, MoO3, WO3, and Re2O7 with 3% loading. The physical properties and structural information were characterized by BET, XRD, ICP-AES, FT-IR, and Raman spectroscopy. Raman results confirm that the molecular arrangements of the active surface metal oxide phases have been achieved. Although there was a limitation on XRD spectroscopy, the diffraction peak at small angle revealed that the metal oxides were impregnated into aperture. Raman spectroscopy has revealed that metal oxide on ZSM-5 catalyst gradually formed crystallization phase with increasing Si/Al atom ratio. It appears that the ratio of Si/Al of support affect the dispersion of metal oxides. FT-IR spectroscopy has revealed that the less Si4+ was placed by Al3+ in the structure of H-ZSM-5 with increasing Si/Al atom ratio, therefore, the Lewis acidity had the tendency to decrease. UV-Raman spectroscopy has revealed that there are Monooxo-MoO4 and Dioxo-MoO4 species on 3% MoOX/ZSM-5-15, and there is Dioxo-MoO4 species on 2% MoOX/ZSM-5-140. The benzene can just be produced after Monooxo-MoO4 species is totally reduced by the methane in methane dehydroaromatisation. It proves that the surface Mo metal is the main factor of benzene formation.
URI: http://hdl.handle.net/11455/3613
其他識別: U0005-0607200717214100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607200717214100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.