Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36168
標題: 阿拉伯芥中AtNAC-like 14基因之功能性分析及sa7突變株之定性分析
Functional analysis of AtNACL14 gene and characterization of sa7 mutant in Arabidopsis thaliana
作者: 陳宏翊
Chen, Hong-Ie
關鍵字: NAC
矮化
出版社: 生物科技學研究所
引用: 林建鑫(2007) 阿拉伯芥中NAC-like基因之分子選殖與功能性分析。國立中興大學生物科技學研究所碩士論文。 施靜芳(2004) 植物中調節分生組織活性之NAC-like基因及與開花老化相關之GIGANTEA (GI)同原基因之功能分析與應用。國立中興大學生物科技學研究所碩士論文。 劉祥欽(2003) 擬南芥中E3 RING Finger基因之分子選殖及特性分析。國立中興大學生物科技學研究所碩士論文。 Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP- SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126, 1563-1570. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Gene involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 9, 841-857. Aukerman, M. J., Schmidt, R. J., Burr, B., and Burr, F. A. (1991) An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev. 5, 310-320. Avivi, Y., Morad V., Ben-Meir H., Zhao J., Kashkush K., Tzfira T., Citovsky V., Grafi G. (2004). Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev. Dyn. 230, 12-22 Baker, C.C., Sieber, P., Wellmerand, F., and Meyerowitz, E.M. (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15, 303-315. Baranowskij, N., Frohberg, C., Prat, S., and Willmitzer, L. (1994) A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator. EMBO J. 13, 5383-5392. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116, 281-297. Barton, M.K. (1998) Cell type specification and self-renewal in the vegetative shoot apical meristem. Curr. Opin. Plant Biol. 1, 37-42 Boulikas, T. (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J. Cell. Biochem. 55, 32-58 Byrne, M.E., Simorowski, J., and Martienssen, R.A. (2002) ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 129, 1957-1965. Byrne, ME, Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 408, 967-971. Clark, S.E., Jacobsen, S.E., Levin, J.Z., and Meyerowitz, E. (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 122, 1567-1575. Cokol, M., Nair, R., and Rost, B. (2000) Finding nuclear localization signals. EMBO Rep. 1, 411-415. Collinge, M. and Boller, T. (2001) Differential induction of two potatogenes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46, 521-529. Cristel C. C., and Jennifer C. F. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. TRENDS in Plant Science, 8, 394-401 De Jager, S. M., Maughan,S., Dewitte,W., Scofield,S., and Murray, J. A.H. (2005) The developmental context of cell-cycle control in plants. Semin. Cell Dev. Biol. 16, 385-396. Dehesh, K., Smith, L. G., Tepperman, J. M. and Quail, P. H. (1995) Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J. 8, 25-36. Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43, 745–757 Diévart, A., and Clark, S. E. (2004) LRR-containing receptors regulating plant development and defense. Development, 131, 251-261. Doerner, P. (2003) Plant merstems: a merry -go-round of signals. Curr. Biol. 13, 368-374 Duval, M., Hsieh, T., Kim, S. Y., and Thomas, T. L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol., 50, 237-248. Ernst, H.A., Olsen, A.N., Larsen, S., and Lo L.L . (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297-303. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme, T.M., Tran, L.S., Yamaguchi,S.K., and Shinozaki, K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876. Gallois, J.-L., Woodward, C., Reddy, G.V., and Sablowski, R. (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129, 3207-3217. Grafi, G. (2004). How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1-6 Green, S., and Chambon, P. (1988) Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 4, 309-314. Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M., and Skriver, K. (2003). Interactions between plant RING-H2 and plantspecific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371, 97-108 Guiltinan, M. J., and Miller, L. (1994) Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol. Biol. 26, 1041-1053. Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X., and Hu, Z. (2003). Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J. 36, 30-44. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill S., and Lydiate, D. (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53, 383-397. Hiroshi, A., Takeshi, U., Takuya, I., Motoaki, S., Kazuo, S., and Kazuko, Y.S. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63-78. Hollenberg, S. M., and Evans, R. M. (1988) Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell, 55, 899-906. Hope, I. A., and Struhl, K. (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell. 46, 885-894. Huang, H., Tudor, M., Su, T., Zhang, Y., Hu, Y. and Ma, H. (1996) DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81-94. Irish, V.F. (1991) Cell lineage in plant development. Curr. Opin. Cell Biol. 3, 983-987. Ishida, T., Aida, M., Takada, S., and Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41, 60-67. Jürgens, G. (2001) Apical-basal pattern formation in Arabidopsis Embryogenesis. EMBO J. 20, 3609-3616. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., and Carrington, J. C. (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4, 205-217. Katagiri, F., Seipel, K., and Chua, N. H. (1992) Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol. Cell. Biol. 12, 4809-4816. Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, T. K.,Nagato, Y., Matsusoka, M., and Hirano, H. Y. (1999) Molecular analysis of the NAC gene family in rice. Mol.Gen. Genet., 262, 1047-1051. Kim, H.S., Park, B.O., Yoo, J.H., Jung, M.S., Lee, S.M., Han, H.J., Kim, K.E., Kim, S.H., Lim, C.O., Yun, D.-J., Lee, S.Y., and Chung, W.S. (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J. Biol. Chem. 282, 36292-36302 Kim, S.G., Kim, S.Y., and Park, C.M. (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 226, 647-654. Kim, S.G., Lee, A.-K., Yoon, H.-K., and Park, C.-M. (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J. 55, 77-88. Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K. and Park, C.-M. (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res. 35, 203-213. Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.-H. and Park, C.-M. (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, 18, 3132-3144. Klinge, B., UÈ berlacker, B., Korfhage, C. and Werr, W. (1996) ZmHox: a novel class of maize homeobox genes. Plant Mol. Biol. 30, 439-453. Ko, J.-H., Yang, S.H., Park, A.H., Lerouxel, O. and Han, K.-H. (2007) ANAC012, a member of the plant-specific NAC transcription factorfamily, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 50, 1035-1048. Kosugi, S., and Ohashi, Y. (1997) PCF1 and PCF2 specifically bind to cis-elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9, 1607-1619. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-1860. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-1860 Latchman, D. S. (1990) Eukaryotic transcription factors. Biochem J. 270, 281-289. Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131, 4311-4322. Laux, T., Mayer, K.F., Berger, J. and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. Lenhard, M. and Laux, T. (1999) Shoot meristem formation and maintenance. Curr. Opin. Plant Biol. 2, 44-50. Lenhard, M., Jürgens, G., and Laux, T. (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 129, 3195-3206. Liu, L., White, M. J., and MacRae, T.H. (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur. J. Biochem. 262, 247-257. Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis. Development, 125, 30273035. Long, J.A., and Barton, M.K. (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218, 341-353. Luran, N.H., and Yang, C.H. (2006). Molecular cloning and functional analysis of GIGANTEA (GI) orthologues from Adiantum capillus-venen and NAC-like genes from Arabidopsis. Graduate Institute of Biotechnology, National Chung Hsing University. Master Thesis. Lyck, R., Harmening, U., HoÈhfeld, I., Treuter, E., Scharf, K.-D. and Nover, L. (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 202, 117-125. Malamy, J. E. and Benfey, P.N. (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2, 390-396. Mayer, K., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805-815. Meisel, L. and Lam, E. (1996) The conserved ELK-homeodomain of KNOTTED-1 contains two regions that signal nuclear localization. Plant Mol. Biol. 30, 1-14. Meyerowitz, E.M. (1997) Genetic control of cell division patterns in developing plants. Cell 88, 299-308. Michael, A. J., Hofer, J. M. I. and Ellis, T. H. N. (1996) Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30, 1051-1058. Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell, 19, 270-280. Mitsuda, N., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2005) The NAC transcriptional factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and required for anther dehiscence. Plant Cell, 17, 2993–3006. Neuteboom, L.W., Veth-Tello, L.M., Clijdesdale, O.R., Hooykaas, P.J., and van der Zaal, B.J. (1999). A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res. 6, 13-19. Ni, M., Dehesh, K., Tepperman, J. M., and Quail, P. H. (1996) GT-2: in vivo transcriptional activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 8, 1041-1059. Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. (2006) The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant cell, 18, 2929-2945. Olsen A. N., Ernst H. A., Leggio L. L., Johansson E., Larsen S., Skriver K. (2004) Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Biological Crystallography, 60, 112-115. Olsen, A. N., Ernst, H. A., Leggio L. L., and Skriver K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79-87. Olszewski, N., Sun, T.-P., and Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 14, s61-s80. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239-247. Ori, N., Eshed, Y., Chuck, G., Bowman, J.L., and Hake, S. (2000) Mechanisms that control Knox gene expression in the Arabidopsis shoot. Development, 127, 5523-5532. Poethig, S. (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet. 5, 273-277. Qu, L. J., and Zhu, Y. X. (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr. Biol. 9, 544-549. Ren, T., Qu, F., Morris, T.J. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12, 1917-1925. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002) Prediction of plant microRNA targets. Cell 110, 513-520. Riechmann, J. L., Heard J., Martin G., Reuber L., Jiang C. Z., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z., Ghandehari D., Sherman B. K., and Yu G. L. (2000) Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among. Science, 290, 2105-2110. Robertson, M. (2004) Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol. 136, 1-15. Ruiz, M., Xoconostle-Cazares, B., and Lucas, W. J. (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development, 126, 4405-4419. Sablowski, R.W.M. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93-103. Sadowski, I. Ma, J. Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature, 335, 563-564. Safrany, J., Haasz, V., Mate, Z., Ciolfi, A., Feher, B., Oravecz, A., Stec A.,, Dallmann, G., Morelli, G., Ulm, R., and Nagy, F. (2008) Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. Plant J. 55, 152-160. Sainz, M. B., Grotewold, E., and Chandler, V. L. (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 9, 611-625. Satina, S, and Blakeslee, A.F. (1941) Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. Am. J. Bot. 28, 862-871. Satina, S. (1940). Demonstrations of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27, 895-905. Scott, M. P. (2000) Development The Natural History of Genes. Cell 100, 27-40. Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C., and Machida, Y. (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 128, 1771-1783. Souer, E., Houwelingen, A.V., Kloos, D., Mol, J. and Koes R. (1996) The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159-170. Steeves, T.A. and Sussex, I.M. (1989) Patterns in Plant Development (2nd edn), Cambridge University Press. Szymkowiak, E.J. and Sussex, I.M. (1996) What chimeras can tell us about plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 351-376. Szymkowiak, E.J., and Sussex, I.M. (1992) The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell, 4, 1089-1100. Tran, L.S., Nakashimaa, K., Sakumaa, Y., Simpsonb, S., Fujitaa, Y., Maruyamaa, K., Fujitac, M., Sekic, M., Shinozakic, K., and Yamaguchi-Shinozaki D.K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter. Plant Cell, 16, 2481-2498. Varagona, M. J. and Raikhel, N. V. (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J. 5, 207-214. Vierstra, R.D. (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135-142. Weigel, D., and Jürgens., G. (2002) Stem cells that make stems. Nature, 415, 751-754. Weir, I. et al. (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development, 131, 915-922. Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024-3036. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., and Chua, N.H. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419, 167-170. Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcia, J.A., and Gutierrez, C. (1999) GRAB proteins novel members of the NAC domain family isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39, 647-656. Yamaguchi, M., Kubo, M., Fukuda, H., and Demura, T. (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. Articles online in advance of print. Yanagisawa, S., and Sheen, J. (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 10, 75-89. Yoo, S.Y., Kim, Y., Kim, S.Y., Lee, J.S., and Ahn, J.H. (2007) Control of Flowering Time and Cold Response by a NAC-Domain Protein in Arabidopsis. PLoS ONE, e642, 1-10. Yoon, H.-K., Kim, S.G., Kim, S.Y., and Park, C.-M. (2008) Regulation of Leaf Senescence by NTL9-mediated Osmotic Stress Signaling in Arabidopsis. Mol.Cells, 25, 438-445. Zhao, C., Avci, U., Grant, E. H., Haigler, C.H. and Beers, E.P. (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 53, 425-436. Zhong, R., Demura, T. and Ye, Z.-H. (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 18, 3158-3170. Zhong, R., Richardson, E.A. and Ye, Z.-H. (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 225, 1603-1611. Zhong, R., Richardson, E.A., and Ye Z.-H. (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 19, 2776-2792. 伍、參考文獻 Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R.,Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D.; Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653-657. Azpiroz-Leehan, R., and Feldmann, K.A. (1997)T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13, 152-156. Bancroft I., and Dean C. (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana, Genetics, 134, 1221-1229. Bruggemann. E., Handwerger, K., Essex, C., and Storz, G. (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J., 10, 755-760. Carrington, J.C., Morris, T.J., Stockley, P.G., and Harrison, S.C. (1987) Structure and assembly of turnip crinkle virus. IV. Analysis of the coat protein gene and implications of the subunit primary structure. J. Mol. Biol. 194, 265-276. Dempsey, D.A., Pathirana, M.S., Wobbe, K.K., and Klessig, D.F. (1997) Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. Plant J. 11, 301-311. Dempsey, D.A., Wobbe, K.K., and Klessig, D.F. (1993). Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus. Phytopathology, 83, 1021-1029. Dievart, A., Dalal, M., Tax, F.E., Lacey, A.D., Huttly, A., Li, J., and Clark, S.E. (2003) CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell, 15, 1198-1211. Hogle, J.M., Maeda, A., and Harrison, S.C. (1986) Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2Å resolution. J. Mol. Biol. 191, 625-638. Huq, E., Tepperman, J.M., and Quail, P.H. (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc.Natl. Acad. Sci. 97, 9789-9794. James D.W. Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H.K. (1995) Direct tagging of the Arabidopsis Fatty Acid Elongation 1 (FAE1) gene with the maize transposon Activator, Plant Cell, 7, 309-319. Jones J.D.G., Carland F.C., Lim E., Raltson E., Dooner H.K. (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco, Plant Cell, 2, 701-707. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science, 286, 1962-1965. Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.I., Town, C.D., Jufii, C.Y., Mason, T., Bowman, C.L., and Barnstead, M. (1999) Sequence analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 402, 761-768. Liu, Y., Mitsukawa, N., Oosumi, T., and Whittier, R. (1995) Efficient isolation and mapping of Arabidopsisthaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457-463. Martienssen, R.A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc.Natl. Acad. Sci. 95, 2021-2026. Oh, J.-W., Kong, Q., Song, C., Carpenter, C.D., and Simon, A.E. (1995) Open reading frames of turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana ecotype Dijon. Mol. Plant-Microbe Interact. 8, 979-987. Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M., and Sundaresan, V. (1999) Analysis of Flanking Sequences from Dissociation Insertion Lines: A database for reverse genetics in Arabidopsis. Plant Cell, 11, 2263–2270. Ren, T., Qu, F., and Morris, T.J. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to Turnip crinkle virus. Plant Cell, 12, 1917- 1925. Ren, T., Qu, F., and Morris, T.J. (2004) The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus. Virology, 331, 316-324. Simon, A.E., Li, X.H., Lew, J.E., Stange, R., Zhang, C., Polacco, M., and Carpenter, C.D. (1992) Susceptibility and resistance of Arabidopsis thaliana to turnip crinkle virus. Mol. Plant-Microbe Interact. 5, 496-503. Sorger, P.K., Stockley, P.G., and Harrison, S.C. (1986) Structure and assembly of turnip crinkle virus. II. Mechanism of in vitro assembly. J. Mol. Biol. 191, 375-383. Sundaresan, V., Springer, P., Volpe, T., Haward, S.; Jones, J.D.G., Dean, C., Ma, H., and Martienssen, R. (1995) Patterns of gene action in plant development revealed by enhanced trap and gene trap transposable elements. Genes Dev. 9, 1797-1810. Weigel, D., Ahn, J.H.; Blázquez, M.A., Borevitz, J., Christensen, S.K., Fankhauser, C., Ferrándiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003-1014. Weigel, D., and Glazebrook, J. (2002) Obtaining Mutants. In ARABIDOPSIS: A Laboratory Manual. (New York, The United States of America: Cold Spring Harbor Laboratory), pp. 19-37. Wilhelmi, L.K. and Preuss, D. (1996) Self-sterility in Arabidopsis due to defective pollen tube guidance. Science, 274, 1535-1537. Wilson, K., Long, D., Swinburne, J., and Coupland, G. (1996). A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell, 8, 659-671. Wobbe, K.K., and Zhao, Y. (1998). Avirulence determinant of turnip crinkle virus localized to the N-terminus of the coat protein. In Abstracts of the 17th Annual Meeting of American Society for Virology (Vancouver: American Society for Virology),169, 6-20.
摘要: NAC (for NAM, ATAF1, 2, and CUC2)基因為一群植物特有的基因群。大部分的NAC蛋白在其N端均含一個約為150胺基酸的高保守性DNA-binding domain以及NLS (localization signal sequence)序列。以阿拉伯芥為例,NAC蛋白參與許多植物生長和發育的過程,例如cell cycle的控制、生長荷爾蒙訊息的傳遞、花器的發育和頂端分生組織的形成等。為了探討NAC基因的功能,我們將阿拉伯芥NAC2 subgroup之AtNACL14啟動子(promoter)後面加上一個GUS報導基因轉殖入阿拉伯芥,進行GUS組織活性分析。結果顯示GUS高表現在根、子葉、芽頂端分生組織及葉。此外,目前在阿拉伯芥中,有一群NAC蛋白C端被預測出具有α螺旋的穿膜功能域,此功能域被認為與蛋白結合在膜上的能力有關。分析大量表現全長AtNACL14基因(35S::AtNACL14)與刪除α螺旋的穿膜功能域(35S:: AtNACL14ΔTM),以及去除C端區域的35S:: AtNACL14ΔC轉基因植物分析結果中發現,大量表現AtNACL14與AtNACL14ΔC之轉基因植物外表型與野生型阿拉伯芥無異。令人驚訝的是,大量表現AtNACL14ΔTM之轉基因植物外表型顯示出植株矮化和葉的扭曲。综合上述結果顯示,具有穿膜功能的NAC轉錄因子對於植物的生理功能具有舉足輕重的影響。本研究另外分析一個具有穩定性狀的T-DNA突變株,sa7突變株它的性狀是營養葉呈現圓形,而且葉面相對於野生型阿拉伯芥較光滑。藉由IPCR的鑑定發現,此T-DNA是位在距離At5g24590上游1572個bp的位置。分析sa7突變株的基因型,發現其是以同型接合子(homozygote)的基因型存在,表現量分析,發現At5g24590的表現量在突變株中較野生型阿拉伯芥低,推測可能是At5g24590的表現受到抑制造成sa7突變株之性狀,因此針對此基因進行功能性分析,分析結果尚未篩選到大量表現At5g24590轉基因植物,而在大量表現At5g24590 RNAi的轉基因植物,其性狀與野生型阿拉伯芥無異,因此這可能暗示著我們T-DNA插入的位置,可能造成包含At5g24590以及其它基因之表現也受影響,因此才共同造成sa7突變株的性狀。
NAC genes (for NAM, ATAF1, 2, and CUC2) are plant specific gene family. Most NAC proteins contain one highly conserved N-terminal DNA-binding domain, consisting of approximately 150 residues and a nuclear localization signal sequence. Some Arabidopsis NAC members involve a variety of plant growth and development processes, such as cell cycle control, growth hormone signaling, floral development, and apical meristem formation. To investigate the function of gene, the promoter of AtNACL14 in NAC2 subgroup was fused with GUS reporter gene, transformed into Arabidopsis and GUS activity analyzed. The results indicated that AtNACL14 were highly expressed in roots, cotyledon, shoot apical meristem and leaves. In addition, NAC family in Arabidopsis containing strong α-helical transmembrane motif (TM) in their C-terminal regions and are predicted to be membrane-associated. Transgenic plants ectopic expression of either full-length of AtNACL14 (35S::AtNACL14) or the truncated AtNACL14 construct (35S:: AtNACL14ΔC) were analyzed. The results indicated that 35S::AtNACL14 and 35S:: AtNACL14ΔC no show any detectable phenotypic changes. Surprisingly, the 35S::AtNACL14ΔTM transgenic plants exhibited severe phenotypic alterations such as dwarfism and curled leaves. This result revealed that membrane release is essential for the function of NAC MTFs (membrane-associated transcription factors). An Arabidopsis T-DNA insertional mutant caused circle and smooth rosette leaves was characterized in this research. Through inverse PCR (IPCR), it has been found that the T-DNA was inserted in 1572 bp of 5' UTR from start codon of At5g24590. All the sa7 mutants are homozygotes for T-DNA insertion and At5g24590 mRNA were down-regulated in the sa7 mutants. This result revealed that the phenotype of sa7 mutant may be caused by the repression of At5g24590 after T-DNA insertion. To explore this possibility, sense and RNAi of At5g24590 cDNA driven by 35S promoter were transformed into Arabidopsis and phenotypic analyzed. Notably, we could not obtained 35S::At5g24590 transgenic plants by selected solid MS medium. The indicated that RNAi plants were phenotypically indistinguishable from wild-type plants. It implied that T-DNA insertion resulted in contain At5g24590 and other gene were affected.
URI: http://hdl.handle.net/11455/36168
其他識別: U0005-1108200823414100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200823414100
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.