Please use this identifier to cite or link to this item:
標題: 利用二維窗洞效應模型模擬分子在沸石間的擴散現象
The Calculation and Study on the Window Effects in Zeolite Diffusion with a Two-Dimensional Model
作者: 蔡輝彥
Tsai, Huei-Yan
關鍵字: Window Effects
Window Effects
Configurational Diffusion
出版社: 化學工程學系所
引用: 1. 王子瑜,曹恒光, ” Brownian Motion, Langevin Equation, and Brownian Dynamics ” 物理雙月刊(廿七卷三期), 2005年六月. 2. L(U) Xin-Chun, ZHAO R., WU T. L., WANG L. P., SUN Y. J., Synthesis and Characterization of a Novel Intergrowth Zeolite T-L, Acta Chimica Sinica, 2005年第11期. 3. Barrer R. M., “Zeolites and Clay Minerals as Sorbents and Molecular Sieve”, Academic Press, New York (1978). 4. Barrer R. M., “Sorption by Zeolites: I. Equilibria and Energetics”, Zeolite Science and Technology, Ribiero, rt al., eds., NATO Series E, No. 80, 227 (1984). 5. Barrer R. M. and D. A. Ibbitson, “Kinetics of Formation of Zeolitic Solid Solutions”, Trans. Faraday Soc., 40, 206-216 (1943). 6. Breck D. W., Zeolite Molecular Sieves, Chap. 1, 77, Wiley, New York (1974). 7. Cavalcante Jr. C. L., M. Eic’, D. M. Ruthven, and M. L. Occelli, “Diffusion of n-paraffins in offretite-erionite type”, Zeolite, 15, 293-307 (1995). 8. Chen N. Y., Garwood W.E. and Dwyer F. G., “Shape Selective Catalysis in Industrial Applications”, Chemical Industries, New York (1996). 9. Chen N. Y., S. J. Lucki, E. B. Mower, “Cage Effect on Product Distribution from Cracking over Crystalline Aluminosilicate Zeolites”, J. Catal., 13, 329 (1969). 10. Cui Y., H. Kita, K.I. Okamoto*, “Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability”, J. Membrane Sci., 236, 17-27 (2004). 11. De Gennes P. G., “Reptation of a Polymer Chain in the Presence of Fixed Obstacles”, J. Chem. Phys., 55, 572 (1971). 12. Derouane E. G., J. M. Andre, and A. A. Lucas, ”Surface Curvature Effects in Physisorption and Catalysis by Microporous Solids and Molecular Sieves.”, J. Catal., 110, 58-73 (1988). 13. Dubbeldam D., S.Calero, T. L. M. Maesen, and B. Smit, “ Incommensurate Diffusion in Confined Systems ”, Phys. Rev. Lett., 90, 24, 245901-1 (2003). 14. Dubbeldam D., S.Calero, T. L. M. Maesen, and B. Smit, “Understanding the Window Effect in Zeolite Catalysis”, angew. Chem., 115, 3752-3754 (2003). 15. Festa R., and E. Galleani d’Agliano, “Diffusion Coefficient for a Brownian Particle in a Periodic Field of Force : I. Large Friction Limit ”, Physica A., 90, 229 (1978). 16. Gorring R. L., ”Diffusion of Normal Paraffins in Zeolite T : Occurrence of Window Effect”, J. Catal, 31, 13 (1973). 17. Guidoni S. E., H. O. Martin, and C. M. Aldao, ” Discretized Model for Diffusion of a Chain in One Dimension.” Physical Review E., 67, 031804 (2003). 18. IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix 2, part 1, Colloid and Surface Chemistry, Pure. Appl. Chem., 31, 578, (1971). 19. Karger J. and D. M. Ruthven, “Diffusion in Zeolites and Other Microporous Solids”, Wiley, New York(1992). 20. Martin F. M. Post, “Diffusion in Zeolite Molecular Sieves: Introduction to zeolite science and practice, H. van Bekkum, E. M. Flanigen, and J. C. Jansen, eds., vol. 58 of Studies in surface science and catalysis”, Elsevier, Amsterdam pp. 391, (1991). 21. Nitsche J. M. and J. Wei, “Window Effects in Zeolite Diffusion and Brownian Motion over Potential Barriers”, AIChE J., 37, 5 (1991). 22. Ruckenstein E., and P. S. Lee, “ Resonant Diffusion ” , Phys. Lett., 56A , 423 (1976). 23. Staples L. W. and J. A. Gard , ”The Fibrous Zeolite Erionite;its occurrence, unit cell, and structure. ”Min. Mag. 32, 261(1959). 24. S. X. Wang, L. M. Wang and R. C. Ewing, “Electron and Ion Irradiation of Zeolites”, J. Nuc. Mat., 278, 233-241 (2000). 25. Terranova G., C. M. Aldao, and H. O. Martin,“Window Effects in a Discretized Model for Diffusion of a Chain in One Dimension”, Physical Review E., 71, 021103 (2005). 26. Weisz P. B., "Zeolites-New Horizons in Catalysis", Chemtech, 3, 498 (1980). 27. Weisz P. B., "Molecular Shape Selective Catalysis", Pure Appl. Chem., 52, 2091 (1980). 28. Weaver D. L., “Note on the Interpretation of Lateral Diffusion Coefficients”, Biophys. J., 38, 311 (1982).
摘要: Gorring在1973年在研究中測量正鏈烷類在沸石T的擴散係數,其鏈長的分佈從正乙烷到正十四烷,結果發現了一奇特的現象,其擴散係數並不會隨著鏈長的增加而單調遞減,反而正十二烷的擴散係數比正八烷的高出約140倍,這一奇特的現象,被稱之為“Window Effects”而Nitsche等人在1991年針對了此現象發展一維的Window Effects的數學模型,主要是要以數值方法來描述正鏈烷類在沸石中的擴散。而在本篇論文中,發展一二維布朗運動分子的表面結構擴散(Configurational Diffusion)之模型,將針對不同形狀之擴散分子在受到連續週期能量影響之情形進行研究,也期待知道Window Effects在何種情況下會出現並找出其臨界點,最後對Gorring (1973), Ruckenstein and Lee (1976), Nitsche and Wei (1991)的研究結果進行合理的比對。
The window effect was first documented in Gorring (1973), in which an unexpected phenomenon was found that the diffusivity of normal paraffins in zeolite T does not monotonously decrease as chain lengths increases. Instead, n-dodecane(C12) diffuses faster than n-octane(C8) with two orders of magnitude. An preliminary one-dimensional model implementing window effect was later developed by Nitsche and Wei (1991) to study the diffusion of normal alkanes in zeolites. In this work, a two-dimensional configurational diffusion model incoperated with reasonable potential model of interaction between diffusion molecules and zeolite is developed. Calculation was performed and checked against the results in Nitsche and Wei (1991) and Gorring (1973). Similar result was also obtained in Ruckenstein and Lee(1976). Satisfactory agreement varifies the correctness of this research.
其他識別: U0005-0908200715000600
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.