Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36225
標題: 植物花朵發育及開花時間相關基因之研究
Molecular characterization of genes controlling flower development and flowering time from various plants
作者: 張玉雲
Chang, Yu-Yun
關鍵字: oncidium
文心蘭
fern
MADS box gene
蕨類植物
開花基因
出版社: 生物科技學研究所
引用: 第一章 文心蘭B群MADS box基因之功能分析 吳家偉。(2005)。文心蘭中B和E功能性之MADS box開花基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 徐杏芬。(2003)。文心蘭花朵發育相關之MADS box基因之選殖及功能分析。 國立中興大學生物科技學研究所博士論文。台灣:台中。 高乃萱。(2007)。文心蘭中B功能性MADS Box 基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 Angenent GC, Franken J, Bussher M, Colombo L, van Tunen AJ (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 4: 101-112. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 133: 713-725. Berbel A, Navarro C, Ferrandiz C, Canas LA, Beltran JP, Madueno F (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139: 174-185. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52. Chang Y-Y, Chiu Y-F, Wu J-W, Yang C-H (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50: 1425-1438. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37. Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol. 20: 487-494. de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18: 1833-1845. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560. Hernandez-Hernandez T, Martinez-Castilla LP, Alvarez-Buylla ER (2007) Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol. Biol. Evol. 24: 465-481. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Hsu H-F, Huang C-H, Chou L-T, Yang C-H (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44 : 783-794. Hsu H-F, Yang C-H (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209. Irish VF (2009) Evolution of petal identity. J Exp Bot 60: 2517-2527. Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16: (Suppl) S1-S17. Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697. Jofuku KD, den Boer BGW, van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225. Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal 19: 268-279. Kanno A, Saeki H, Kameya T, Saedler H, Theißen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52: 831-841. Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am. J. Bot. 91: 2102-2118. Kim S-Y, Yun P-Y, Fukuda T, Ochiai T, Yokoyama J, Kameya T, Kanno A (2007) Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 172: 319-326. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783. Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148. Kramer EM, Su HJ, Wu CC, Hu JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol. Biol. 6: 30. Krizek BA, Meyerowitz EM (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22. Lamb RS, Irish VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. USA 100: 6558-6563. Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant. Mol. Biol. 54: 701-711. Lu H-C, Chen H-H, Tsai W-C, Chen W-H, Su H-J, Chang D-C, Yeh H-H (2007) Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143: 558-569. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277. Mondragón-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci. 13: 51-59. Mondragón-Palomino M, Theißen G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 104: 583-594. Moon Y-H, Jung J-Y, Kang H-G, An G (1999) Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167-177. Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol. Biol. 58: 435-445. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. Pinyopich A, Ditta DS, Savidge B, Liljergren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88. Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175-186. Purugganan MD (1997) The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45: 392-396. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798. Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol. Chem. 378: 1079-1101. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936. Shore P, Sharrocks AD (1995) The ETS-domain transcription factors Elk-1 and SAP-1 exhibit differential DNA binding specificities. Nucl. Acids Res. 23: 4698-4706. Sommer H, Beltran J-P, Huijser P, Pape H, Lonnig W-E, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613. Theißen G (2001) Development of floral organ identity: stories from MADS house. Curr. Opin. Plant Biol. 4: 75-85. Theißen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516. Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Curr. Opin. Genet. Dev. 5: 628-639. Theißen G, Saedler H (2001) Floral quartets. Nature 409: 469-471. Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.. Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704. Tsai W-C, Kuoh C-S, Chuang M-H, Chen W-H, Chen H-H (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45: 831-844. Tsai W-C, Lee P-F, Chen H-I, Hsiao Y-Y, Wei W-J, Pan Z-J, Chuang M-H, Kuoh C-S, Chen W-H, Chen H-H (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139. Tsai W-C, Pan Z-J, Hsiao Y-Y, Jeng M-F, Wu T-F, Chen W-H, Chen H-H (2008) Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49: 814-824. van der Krol AR, Brunelle A, Tsuchimoto S, Chua N-H (1993) Functional analysis of petunia floral homeotic MADS box gene Pmads1. Genes Dev. 7: 1214-1228. Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16: 741-754. Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc. Natl. Acad. Sci. USA 104: 1081-1086. Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46: 54-68. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39. Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17: 51-62. 第二章 文心蘭E群MADS box基因OMADS6功能性分析 吳家偉。(2005)。文心蘭中B和E功能性之MADS box開花基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 邱怡芬。(2007)。文心蘭中調控開花時間相關基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 徐杏芬。(2003)。文心蘭花朵發育相關之MADS box基因之選殖及功能分析。 國立中興大學生物科技學研究所博士論文。台灣:台中。 高乃萱。(2007)。文心蘭中B功能性MADS Box 基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130: 605-617. Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993. Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5: 33-44. Chen M-K, Lin I-C, Yang C-H (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49: 704-717. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935-1940. Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15: 914-925. Flanagan CA, Ma H (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Boil. 26: 581-595. Greco R, Stagi L, Colombo L, Angenent GC, Sari-Gorla M, Pe ME (1997) MADS box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253: 615-623. Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lorz H, Dresselhaus T (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol. 127: 33-45. Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids. Res. 16: 9877. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Hsu H-F, Huang C-H, Chou L-T, Yang C-H (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44 : 783-794. Hsu H-F, Yang C-H (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209. Huang H, Tudor M, Weiss CA, Hu Y, Ma H (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol. 28: 549-567. Immink RGH, Gadella TWJ, Ferrario S, Busscher M, Angenent GC (2002) Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci. USA 99: 2416-2421. Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An G (2000) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breeding 6: 581-592. Kang H-G, An G (1997) Isolation and characterization of a Rice MADS box gene belonging to the AGL2 gene family. Mol. Cell 7: 45-51. Kanno A, Hienuki H, Ito T, Nakamura T, Fukuda T, Yun P-Y, Song I-J, Kamimura T, Ochiai T, Yokoyama J, Maki M, Kameya T (2006) The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sex. Plant Reprod. 19: 133-144. Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D,Teeri TH (2000) GRCD1, an AGL2-like MADS-box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12: 1893-1902. Kyozuka J, Harcourt R, Peacock WJ, Dennis ES (1997) Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35: 573-584. Lawton-Rauh AL, Buckler EST, Purugganan MD (1999) Patterns of molecular evolution among paralogous floral homeotic genes. Mol. Biol. Evol. 16: 1037-1045. Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833. Ma H, Yanofsky MF, Meyerowitz M (1991) AGL1-AGL6, and Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484-495. Malcomber S, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16: 1692-1706. Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci. 10: 427-435. Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377: 522-524. Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex. Plant Reprod. 11: 22-28. Melzer R, Verelst W, Theißen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids. Res. 37: 144-157. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. Pelaz S, Gustafson-Brown C, Kohalmi AE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394. Pelucchi N, Fornara F, Facalli C, Masiero S, Lago C, Pè ME, Colombo L, Kater MM (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sex. Plant Reprod. 15: 113-122. Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175-186. Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269. Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721-733. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 134: 1632-1641. Shitsukawa N, Tahira C, Kassai K-i, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19: 1723-1737. Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85. Theißen G, Saedler H (1995) MADS-box genes in ontogeny and phylogeny of plants: Haeckel''s ''biogenetic law'' revisited. Curr. Opin. Genet. Dev. 5: 628-639. Theißen G, Saedler H (2001) Floral quartets. Nature 409: 469-471. Tzeng T-Y, Hsiao C-C, Chi P-J, Yang C-H (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis thaliana. Plant Physiol. 133: 1091-1101. Vandenbussche M, Theißen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids. Res. 31: 4401-4409. Yu H, Goh C-J (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123: 1325-1336. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, Depamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169: 2209-2223. Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223: 698-707. 第三章 蘭花及蕨類植物中GIGANTEA (GI)同源基因之選殖與功能性分析 王毓祥、陳俞妙、沈再木。2006。貯運溫度及時間對帶介質蝴蝶蘭植株貯運及生長之影響。臺灣園藝。52(3):311-320。 邱怡芬。2007。文心蘭中調控開花時間相關基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 陳玉蓮。2002。溫度、光度及模擬儲運對文心蘭‘埔里貴妃’、‘火山皇后’和Colmanaras Wildcat生育與開花之影響。國立台灣大學園藝學研究所碩士論文。台灣:台北。 陳逸詩。2005。蝴蝶蘭LEAFY 基因選殖及其表現分析。國立屏東科技大學農園生產系碩士論文。台灣:屏東。 陳靖棻。2004。異種植物中GIGANTEA同源基因之選殖與其功能性之分析。國立中興大學生物科技學研究所博士論文。台灣:台中。 Alvarez J, Guli CL, Yu XH, Smith DR (1992) Terminal Flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J 2: 103-116. Amasino RM (1996) Control of flowering time in plants. Curr. Opin. Genet. Dev. 6: 480-487. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55: 373-399. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601-639. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In Photoinhibition, D.J. Kyle, C.B. Osmond, and C.J. Arntzen, eds (Amsterdam, NL: Elsevier Science Publishers), pp. 227-287. Bate NJ, Rothstein SJ, Thompson JE (1991) Expression of Nuclear and Chloroplast Photosynthesis-Specific Genes During Leaf Senescence. J. Exp. Bot. 42: 801-811. Bernier G, Havelange A, Houssa C (1993) Physiological Signals That lnduce Flowering. Plant Cell 5: 1147-1155. Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404: 889-892. Boo YC, Jung J (1999) Water deficit - induced oxidative stress and antioxidative defenses in rice plants. Plant Physiol. 155: 255- 261. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 Suppl, S18-31. Briggs WR, Olney M A (2001) Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 125: 85-88. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabdour S, Page T, Pink D (2003) The molecular analysis of leaf senescence- a genomics approach. Plant Biotechnol. J. 1: 3-22. Cao SQ, Song YQ, Su L (2006) Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biologia Plantarum 51: 359-362. Cao SQ, Ye M, Jiang ST (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24: 683-690. Carter PJ, Nimmo HG, Fewson CA, Wilkins MB (1991) Circadian rhythms in the activity of a plant protein kinase. EMBO J. 10: 2063-2068. Coupland G (1995) Genetic and environmental control of flowering time in Arabidopsis. Trends Gene. 11: 393-397. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630-633. Doyle MR, Davis SJ, Bastow RM, McWatters H G, Kozma-Bognár L, Nagy F, Miller A J, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74-77 Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110: 925-931. Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ (2005) Natural allelic variation in the temperature compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170: 387-400. Eimert K, Wang SM, Lue WI, Chen J (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18: 4679-4688. Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313-319. Goosey L, Palecanda L, Scharrock RA (1997) Differential patterns of expression of the Arabidopsis phyB, phyD and phyE phytochrome genes. Plant Physiol. 115: 959-969 Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18: 1177-1187. Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Aribidopsis photoreceptors. Science 279: 1369-1363. Hartwell J, Smith LH, Wilkins MB, Jenkins GI, Nimmo HG (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10: 1071-1078. Hayama R, Shuji Y, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722. Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and Age-Related Processes That Influence the Longevity and Senescence of Photosynthetic Tissues in Arabidopsis. Plant Cell 5: 553-564. Hou C-J, Yang C-H (2009) Functional analysis of FT and TFL1 orthologs from Orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 50: 1544-1557. Huq E, Tepperman JM, Quail PH (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97: 9789-9794. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999). Activation tagging of the floral inducer FT. Science 286: 1962-1965. Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360. Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Peeters AJ (1998b) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885-892. Koornneef M, Alonso-Blanco C, Peters AJ, Soppe W (1998a) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol. Plant Mol. Biol. 49: 345-370. Koornneef M, Hanhart, CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66. Kurepa J, Smalle J, Van Montagu M, Inze D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 14: 759-764. Lascano HR, Melchiorre MN, Luna CM, Trippi VS (2003) Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Sci. 164: 841-848. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Ann. Rev. Plant Biology 58: 115-136. Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278. Martinez-Zapater JM, Coupland G, Dean C, Koornneef M (1994). The transition to flowering in Arabidopsis. In Arabidopsis. Edited by Somerville, C.R. and Meyerowitz, E.M. pp. 403-434. (New York, Cold Spring Harbor Laboratory Press.) Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA (2003) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15: 223-236 McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792-803. McDaniel CN, Singer SR, Smith SME (1992) Developmental states associated with the floral transition. Dev. Biol. 153: 59-69. Meimoun P, Gousset-Dupont A, Lebouteiller B, Ambard-Bretteville F, Besin E, Lelarge C, Mauve C, Hodges M, Vidal J (2009) The impact of PEPC phosphorylation on growth and development of Arabidopsis thaliana: Molecular and physiological characterization of PEPC kinase mutants. FEBS Letters 583: 1649-1652. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol. 137: 399-409. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2: 629-641. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 (Suppl): S111-S13. Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci. 5: 75-80. Noctor G, Arisi ACM, Jouanin L, Kunert K-J, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49: 623-647. Noodén LD (1988)The phenomenon of senescence and aging. In: Senescence and Aging in Plants. Eds. L. D. Nooden and A. C. Leopold, Acad. Press, San Diego. pp. 2-50. Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In Phytohormones and related compounds: A comprehensive treatise.Volume II. Eds D. S. Letham, P. B. Goodwin and T. J. V. Higgins. Elsevier/North Holland,Amsterdam. pp. 329-69. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379-414. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285: 1579-1582. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochrome: Photosensory perception and signal transduction. Science 268: 675-680. Rubio V, Deng XW (2007) Standing on the shoulders of GIGANTEA. Science 318: 206-207. Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J. 10: 859-868 Sanda S L, Amasino RM (1996) Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111: 641-744. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265. Shannon S, Meeks-Wanger DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3: 877-892. Smart CM (1994) Gene expression during leaf senescence. New Phytol. 126: 419-448. Smith H (2000) Phytochromes and light signal perception by plants: an emerging synthesis. Nature 407: 585-591. Smith H, Whitelam GC (1997) Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 7: 413-427. Somers DE, Webb AAR, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485-494 Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120. Sung ZR, Belachew A, Bai S, Bertrand-Garcia R (1992) EMF, an Arabidopsis gene required for vegetative shoot development. Science 258: 1645-1647. Taize L, Zeiger E (2002) Plant physiology. Third Edition. Sinauer Associates., Inc. Sunderland, Massachusetts. Taylor, CB, Bariola, PA, Delcardayre, SB, Raines, RT , Green PJ (1993) RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA 90: 5118-5122. Tseng TS, Salome P A, McClung C R, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16: 1550-1563. Valverde F, Mouradov A, Soppe WJ, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006. van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J. Exp. Bot. 55: 2147-2153. Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 167: 671-677. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500. Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100:403-408. Winter K (1980) Day/Night Changes in the Sensitivity of phosphoenolpyruvate carboxylase to malate during crassulacean acid metabolism. Plant Physiol. 65: 792-796. Yang C-H, Cheng L-J, Sung ZR (1995) Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev Biol 169: 421-435. Yano M, Katayose Y, Ashikara M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483. Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312. Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with his
摘要: 摘 要 文心蘭為目前台灣農業重點發展作物之一,在切花及盆花市場皆具高經濟價值。在目前的蘭花學術研究中文心蘭並非主要研究對象,為平衡經濟面與學術面的進步,在文心蘭的學術研究上更顯重要。而文心蘭在花形上主要有一具觀賞價值的唇瓣,占了花朵面積的四分之三,也是文心蘭在傳統育種上一種要的依據。無論是唇瓣大小的及唇瓣顏色的改變,都是文心蘭育種的目標之一。因而本研究則針對可能調控文心蘭唇瓣及花型發育的基因為主。了解這些基因對於唇瓣發育中所扮演的角色,以利分子育種的進行。 在本研究中利用四個已經選殖到的文心蘭MADS box B群基因(OMADS5、OMADS9、OMADS8、OMADS3)分別在不同唇瓣發育突變的文心蘭中探討其在表現量的差異。其中發現OMADS5為一在唇瓣不會表達的基因。在花萼及花瓣中則可偵測其存在。而另一個OMADS9則只存在於唇瓣及花瓣中,在花萼中不表達。而在文心蘭花朵發育時,花瓣與唇瓣同時被花萼包裹於其中,但在外觀上花萼及花瓣外形相似。因而說明OMADS5的存在可能會抑制唇瓣的形成。另一方面利用三唇瓣及四唇瓣等不同的文心蘭花形,觀察OMADS5與唇瓣形成的關係中也更加証明,不論是花萼或花瓣突變為唇瓣時,則OMADS5表現量下降。當唇瓣發育不完全時則可看到OMADS5也有少許的表現量存在。因而說明了OMADS5可能是一抑制與唇瓣的形成的因子。利用共軛焦技術觀察不同時期唇瓣及花萼或花瓣的發育結果中顯示,在唇瓣發育中初期先有細胞數目的增加,且細胞形態與花萼或花瓣等已不相同。在花被已發育後期則主要以細胞體積的擴展,使得唇瓣在文心蘭花朵中占有較大的面積及與花萼及花瓣不相同的質地。而唇瓣的發育極有可能在唇瓣形成時已由OMADS5所表達的量來決定了花被的發育。 在阿拉伯芥的研究中,調控花瓣發育主要有三群基因,除所述之B群基因之外,尚有A及E群基因同時與B群基因結果而進行花被中花瓣的發育。在文心蘭中本實驗室也選殖了五個與阿拉伯芥A/E群基因互為同源基因的基因分別為OMADS6、OMADS11、OMADS7、OMADS10、OMADS1。目前除OMADS6外其功能性已被探討。而本研究主要針對OMADS6在阿拉伯芥中對於開花時間及花朵發育的影響中推論其可能在文心蘭中所扮演的角色。在結果中可知,OMADS6在序列及演化分析中可知與阿拉伯芥SEP3為同源基因屬於MADS box E群基因。在阿拉伯芥大量表現時可使其極早進入生殖生長,且花朵的花萼及花瓣的發育也會異常。由此可知OMADS6與SEP3可能在功能上相似,與花被的發育相關。至於是否A/E群基因與B群基因是如何作用進而調控花朵發育的,可能需要再進一步在蛋白交互作用上做更深入的研究,才能將此三群基因在唇瓣發育的關係釐清。 除了花型的基因外,開花時間的調節也是另一個在蘭花育種中重要的指標。若能以生物技術的方向培育不同開花時間的文心蘭達到產期調節的目的,則對於產業的利用性更高。而GI是在阿拉伯芥中與開花相關的基因,在GI單點突變的植物中,植株葉片外形改變,且開花時間延遲。雖然在開花機制中GI的調節可能是多方面的,但對於開花時間的調控上,是一個比較上游的基因,對於下游開花基因調節影響大。GI在阿拉伯芥中的功能尚未被真正的說明,因而在學術上也有一定的價值存在。因而在本研究中提出了在蝴蝶蘭中GI可能與光合作用中碳的固定相關,進而最終影響到植株的生長及開花。另一方面對於GI功能的研究中以蕨類植物為材料,在非顯花植物中選殖到GI基因。並在轉基因植物中觀察到對於開花時間及老化的影響說明了,在不開花的植物中所選殖的GI在演化上具有保留性,在阿拉伯芥中表達也具有調控開花時間或老化的功能,因而在GI與開花時間的關係上說明GI可能是間接調控開花時間,其真正在植物中扮演的角色仍需再利用更多的研究去解答。
To investigate sepal/petal/lip formation in O. Gower Ramsey, three paleoAP3 genes, OMADS5 (clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PI gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Further analysis revealed that OMADS5 might play a role in suppressing lip formation by possibly inhibiting cell proliferation rather than cell expansion. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or 9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells may proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants (Chapter 1). Four MADS-box genes, OMADS6, OMADS11with an extensive similarity to E functional MADS box genes, were characterized from the orchid (Oncidium Gower Ramsey). OMADS6 is a SEP3 orthologue whereas OMADS11 is closely related to SEP1/2 within the E function genes. OMADS7 is closely related to AGL6-like genes whereas OMADS10 is the putative AP1 orthologue. The identity of these orchid MADS box genes in different AP1/AGL9 subgroup was further supported by the present of conserved motifs in their C-terminal region of the proteins. The mRNA expression pattern for OMADS6 was different from most SEP3 orthologues by strongly detected in sepal, petal, lip and carpel and was barely detected in stamen. The mRNA expression pattern for OMADS11 was similar to OMADS6 and was different from SEP1/2 orthologues since its expression was undetectable in stamen. The high similarity of expression pattern for SEP/AGL6-like genes OMADS6, 11 and 7 indicated that their function is highly conserved in orchid during evolution. Ectopic expression of OMADS6 in transgenic Arabidopsis plants caused extremely early flowering and flower organs conversion such as carpelloid sepals and staminoid petals observed. This result reveals the possible functional for OMADS6 in regulating flower transition and formation (Chapter 2). Mutation in the Arabidopsis thaliana GIGANTEA (GI) gene caused delay of flowering, alteration of circadian rhythms and high tolerance to oxidative stress. However, no research on the characterization of flowering time genes or flower transition has been reported in orchids or non-flowering plants. We report here on the isolation and characterization of orthologues of flowering time gene GI from orchids of Oncidium Gower Ramsey (OnGI) and Phalaenopsis aphrodite (PaGI). OnGI and PaGI mRNA are expressed throughout development and can be detected in various organs. However, the expression level of mRNA varied under LD conditions and cycled vigorously, with the level highest at the 8 to 12 h of the light period and lowest at dawn. Ectopic expression of OnGI and PaGI in gi mutant of Arabidosis promoted flowering. In this report, orthologues of PcGI were also cloned from non-flowering plants ferns Pteris cretica cv. Albolineata, and their mRNA also varied under LD conditions and cycled vigorously as observed in the flowering plants. Ectopic expression of PeGI also promoted flowering in Arabidopsis gi-1 mutants. The detached leaves of 35S::PeGI/gi-1 transgenic plants showed leaf senescence earlier than gi-1 mutants. Our result provided evidence to show that GI orthologues from orchid and ferns were regulated similarly and should play multiple roles in addition to control flowering time (Chapter 3).
URI: http://hdl.handle.net/11455/36225
其他識別: U0005-2509200915214600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2509200915214600
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.