Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3623
標題: 以二維數學模型模擬細胞內的擴散與結合機制
A Mathematical Two-Dimensional Model Accounting for Binding Mechanisms in Intracellular Diffusion
作者: 林彥菖
Lin, Yen-Chang
關鍵字: intracellular diffusion
細胞內的擴散
binding
結合
出版社: 化學工程學系所
引用: 1. Abramowitz M. and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.” U. S. Department of Commerce National Bureau of Standards Applied Mathematics Series 55, Washington, D. C., USA(1977) 2. Crank, J., “The Mathematics of Diffusion.”(1979) 3. Nelson, D.L., M. M., Cox, “Leninger Principles of Biochemistry.” (2005) 4. Poling, B. E., J. M. Prausnitz, and J. P. O' Connell, “The Properties of Gases and Liquids.”(2001) 5. Arrio-Dupont, M., G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, “Translational Diffusion of Globular Proteins in the Cytoplasm of Cultured Muscle Cells.” Biophy. J. 78, 901-907 (2000) 6. Agutter, P. S., P. C. Malone, and D. N. Wheatley, “Intracellualr Transport Mechanisms: A Critique of Diffusion Theory.” J. theor. Biol. 176, 261-272 (1995) 7. Becskei, A. and I. W. Mattaj, “Quantitative Models of Nuclear Transport.” Curr. Opin. in Cell Biol. 17, 27-34 (2005) 8. Ellis, R. J., “Macromolecular Crowding: Obvious but Underappreciated.” Trends in Biochem. Sci. 26, 597-604(2001) 9. Fushimi, K., and A. S. Verkman, “Low Viscosity in the Aqueous Domain of Cell Cytoplasm Measured by Picosecond Polarization Microscopy.” J. Cell Biol. 112, 719-725 (1991) 10. Gershon, N. D., K. R. Porter, and B. L. Trus, “The Cytoplasmic Matrix: its Volume and Surface Area and the Diffusion of Molecules Through it.” Proc. Natl. Acad. Sci. 82, 5030-5034 (1985) 11. Hirokawa, N., “Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport.” Science 279, 519-526(1998) 12. Hirokawa, N. and R. Takemura, “Molecular Motors in Neuronal Development, Intracellular Transport and Diseases.” Curr. Opin. in Neurobiology 14, 564-573 (2004) 13. Jacobson, K., and J. Wojcieszyn, “The Translational Mobility of Substances within the Cytoplasmic Matrix.” Proc. Natl. Acad. Sci. 81, 6747-6751 (1984) 14. Kao, H. P., J. R. Abney, and A. S. Verkman, “Determinants of the Translational Mobility of a Small Solute in Cell Cytoplasm.” J. Cell Biol. 120, 175-184 (1993) 15. Kreis, T. E., B. Geiger, and J. Schlessinger, “Mobility of Microinjected Rhodamine Actin within Living Chicken gizzard Determined by Fluorescence Photobleaching Recovery” Cell 29, 835-845 (1982) 16. Lukacs, G. L., P. Haggie, O. seksek, D. Lechardeur, N. Freedman, and A. S. Verkman, “Size-dependent DNA Mobility in Cytoplasm and Nucleus.” J. Biol. Chem. 275, 1625-1629 (2000) 17. Luby-Phelps, k., D. L. Taylor, and F. Lanni, “Probing the Structure of Cytoplasm.” J. Cell Biol. 102, 2015-2022 (1986) 18. Luby-Phelps, K., P. E. Castle, d. L. Taylor, and F. Lanni, “Hindered Diffusion of Inert Tracer Particles in the Cytoplasm of Mouse 3T3 Fibroblasts.” Proc. Natl. Acad. Sci. USA 84, 4910-4913 (1987) 19. Luby-Phelps, K., F. Lanni, and D. L. Taylor, “The Submicroscopic Properties of Cytoplasm as a Determinant of Cellular Function,” Ann. Rev. Biophys. Biophys. Chem. 17, 369-396 (1988) 20. Minton, A. P., “The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media.” J. Biol. Chem. 276, 10577-10580(2001) 21. Maughan, D., and C. Lord, “Protein Diffusivities in Skinned Frog Skeletal Muscle Fiber,” Adv. Exp. Med. Biol. 299, 75-84 (1988) 22. Mastro, A. M., M. A. Babich, W. D. Taylor, and A. D. Keith, “Diffusion of a Small Molecule in the Cytoplasm of Mammalian Cells.” Proc. Natl. Acad. Sci. 81, 3414-3418(1984) 23. Nakase, T., Christian C. G. Naus, “Gap Junctions and Neurological Disorders of the Central Nervous System.” Bioch. et Bioph. Acta 1662(1-2), 149-158 (2004) 24. Nitsche, J. M., H.-C. Chang, P. A. Weber and B. J. Nicholson, “A Transient diffusion Model Yields Unitary Gap Junctional Permeabilities from Images of Cell to Cell Fluorescent Dye Transfer Between Xenopus Oocytes.” Bioph. J. 86, 2058-2077 (2004) 25. Odde, D. J., “Estimation of the Diffusion-Limited Rate of Microtubule Assembly.” Biophy. J. 73, 88-96(1997) 26. Odde, D., “Diffusion inside microtubules.” Eur. Biophys. J. 27, 514-520 (1998) 27. Papadopoulos, S., K. D. Jurgens, and G. Gros, “Protein Diffusion in Living Skeletal Muscle Fibers: Dependence on Protein Size, Fiber Type, and Contraction.” Biophy. J. 79, 2084-2094(2000) 28. Pickard, W. F., “The Role of Cytoplasmic Streaming in Symplastic Transport.” Plant, Cell and Environment 26, 1-15 (2003) 29. Renkin, E. M., “Filtration, Diffusion and Milecular Sieving Through Porous Cellulose” Membranes, J. Gen. physol., 38, 225-243 (1954) 30. Schliwa, M. and G. Woehlke, “Molecular motors.” Nature 422, 759-755 (2003) 31. Verkman, A. S., “Solute and Macromolecule Diffusion in Cellular Aqueous Compartments.” Trends Biochem. Sci. 27, 27-33(2002) 32. Weber, P. A., H. C. Chang, K. E. Spaeth, J. M. Nitsche and B. J. Nicholson, “ The Permeability of Gap Junction Channels to Probes of Different Size Is Dependent on Connexin Composition and Permeant-Pore Affinities.” Bio. J. 87, 958-973(2004) 33. Wojcieszyn, J. W., R. A. Schlegel, E. S. Wu, and K. A. Jacobson, “Diffusion of Injected Macromolecules within the Cytoplasm of Living Cells.” Proc. Natl. Acad. Sci. USA 78, 4407-4410 (1981) 34. Weisiger, R. A., “Cytoplasmic Transport of Lipids: Role of Binding Proteins.” Comp. Biochem. Physiol. 115B, 319-331(1996)
摘要: 細胞質為一非均質的環境其中包含了許多的蛋白質、胞器以及細胞骨架微絲。細胞質內的輸送對於維持正常細胞的功能扮演著重要的角色。細胞質內的輸送方式分成主動運輸和被動運輸二種,而在此研究中以二維數學模型來描述生物分子以濃度梯度為驅動力在細胞內擴散的情形。本研究藉由表觀擴散係數來定量分子在細胞質內的擴散,其中表觀擴散係數包含所有會影響分子在細胞內擴散的物理化學因子,但結合效應已從表觀擴散係數中獨立出來。 本研究假設三種不同的結合機制來模擬分子在細胞內擴散時的結合效應。第一種結合機制假設為一階不可逆程序,第二種結合機制設定為一階不可逆程序但束縛住分子的數量為有限,第三種結合機制為可逆程序。利用這三種不同的結合機制來探討結合效應是如何延遲分子在細胞內的擴散。在方程式的求解分別使用解析解和數值解二種方法來求解。從研究的結果中了解結合效應在擴散程序中所扮演的角色並且也成功的將結合效應從表觀擴散係數中獨立出來,這樣一來表觀擴散係數就只包含細胞質的黏度和立體障礙二種阻礙因子。此研究對於探索及定量分子在細胞內的擴散開啟了一個新的里程碑。
Cytoplasm is a highly inhomomgeneous space, including many proteins, organelles and cytoskeletal filaments. Cytoplasmic transport plays an important role in the maintenance of cell function and is categorized into passive and active transport. This work develops a two dimensional mathematical model describing the intracellular diffusion and yielding probe concentration distribution within the cell. In this study, cytoplasmic mobility is quantified as apparent diffusion coefficient(ADC), which accounts for all the diffusion resistances accured, binding, however, as an important diffusion resistance, is isolated from all others included in ADC. This work assumes three different binding mechanisms describing binding effect within a cell. For the first binding mechanism, it assumes first order irreversible process. For the second binding takes the form of first order irreversible with limited binding capacity. It could as well be hypothesized reversible in the third mechanism. Various mechanisms are employed to study how binding effects retard the intracellular transport. The formulation describing the intracellular transport process can be solved by both analytical and numerical methods. Results of this work disclose the role of binding in the diffusion process and at the same time, extract binding effects from ADC, which previously wraps up all major diffusion resistances including viscosity of cytosol, cytoplasmic crowdness, and binding. This work sets an significant milestone for the upcoming research on exploration and quantification of intracellular transport.
URI: http://hdl.handle.net/11455/3623
其他識別: U0005-1008200710050800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.