Please use this identifier to cite or link to this item:
標題: 鐵炮百合兩花藥專一性基因蛋白質之特性分析
Characterization of two unknown anther-specific genes in Lilium longiflorum
作者: 吳佳穎
Wu, Chia-Ying
關鍵字: LLP-14
Lilium longiflorum
出版社: 生物科技學研究所
引用: 楊正守. 2008. 鐵砲百合兩個嶄新的花藥專一性基因與蛋白質之特性分析. 國立中興大學碩士論文 Abel S, Savchenko T, Levy M. 2005. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5: 72 Anandalakshmi R, Marathe R, Ge X, Herr JM, Mau C, et al. 2000. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290: 142-4 Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, et al. 2009. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453-72 Bagnall D. 1992. Control of flowering in Arabidopsis thaliana by light, vernalisation and gibberellins. Functional Plant Biology 19: 401-9 Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. 2007. Pollen wall development in flowering plants. New Phytol 174: 483-98 Bosch M, Hepler PK. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17: 3219-26 Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277: 21851-61 Bouche N, Yellin A, Snedden WA, Fromm H. 2005. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56: 435-66 Cai G, Cresti M. 2009. Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot 60: 495-508 Chaudhary N, McMahon C, Blobel G. 1991. Primary structure of a human arginine-rich nuclear protein that colocalizes with spliceosome components. Proc Natl Acad Sci U S A 88: 8189-93 Cheng H, Song S, Xiao L, Soo HM, Cheng Z, et al. 2009. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5: e1000440 Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, et al. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19: 3876-88 Creelman RA, Mullet JE. 1997. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355-81 Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T. 2007. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6: 207-30 De Grauwe L, Vriezen WH, Bertrand S, Phillips A, Vidal AM, et al. 2007. Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta 226: 485-98 Dudareva N, Evrard JL, Pillay DT, Steinmetz A. 1994. Nucleotide sequence of a pollen-specific cDNA from Helianthus annuus L. encoding a highly basic protein. Plant Physiol 106: 403-4 Edlund AF, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16 Suppl: S84-97 Evrard JL, Nguyen I, Bergdoll M, Mutterer J, Steinmetz A, Lambert AM. 2002. A novel pollen-specific α-tubulin in sunflower: structure and characterization. Plant Mol Biol 49: 611-20 Feijo JA, Malho R, Obermeyer G. 1995. Ion dynamics and its possible role during in-vitro pollen germination and tube growth. Protoplasma 187: 155-67 Feys B, Benedetti CE, Penfold CN, Turner JG. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6: 751-9 Fu Y. 2010. The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol 52: 131-7 Goldberg RB, Beals TP, Sanders PM. 1993. Anther development: basic principles and practical applications. Plant Cell 5: 1217-29 Golovkin M, Reddy AS. 2003. A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci U S A 100: 10558-63 Guo H, Ecker JR. 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7: 40-9 Haber-Pohlmeier S, Abarca-Heidemann K, Korschen HG, Dhiman HK, Heberle J, et al. 2007. Binding of Ca2+ to glutamic acid-rich polypeptides from the rod outer segment. Biophys J 92: 3207-14 Hathaway DR, Konicki MV, Coolican SA. 1985. Phosphorylation of myosin light chain kinase from vascular smooth muscle by cAMP- and cGMP-dependent protein kinases. J Mol Cell Cardiol 17: 841-50 Hepler PK, Lovy-Wheeler A, McKenna ST, Kunkel JG. 2006. Ion and pollen tube growth. Plant cell Monogr 3: 47-69 Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17: 159-87 Hoeflich KP, Ikura M. 2002. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108: 739-42 Holdaway-Clarke TL, Hepler PK. 2003. Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159: 539-63 Hong-Bo S, Li-Ye C, Ming-An S. 2008. Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30: 634-41 Honys D, Twell D. 2003. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640-52 Honys D, Twell D. 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5: R85 Houdusse A, Gaucher JF, Krementsova E, Mui S, Trybus KM, Cohen C. 2006. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc Natl Acad Sci U S A 103: 19326-31 Hsu Y-F, Tzeng J-D, Liu M-C, Yei F-L, Chung M-C, Wang C-S. 2008. Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J Plant Physiol 165: 553-63 Hsu YF, Wang CS, Raja R. 2007. Gene expression pattern at desiccation in the anther of Lilium longiflorum. Planta 226: 311-22 Huang JC, Chang FC, Wang CS. 1997. Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol Biol 34: 681–86 Huang JC, Lin SM, Wang CS. 2000. A pollen-specific and desiccation-associated transcript in Lilium longiflorum during development and stress. Plant Cell Physiol 41: 477-85 Huang S, Jin L, Du J, Li H, Zhao Q, et al. 2007. SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J 51: 406-18 Igarashi M, Watanabe M. 2007. Roles of calmodulin and calmodulin-binding proteins in synaptic vesicle recycling during regulated exocytosis at submicromolar Ca2+ concentrations. Neurosci Res 58: 226-33 Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, et al. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584-96 Jurado LA, Chockalingam PS, Jarrett HW. 1999. Apocalmodulin. Physiol Rev 79: 661-82 Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, et al. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? The Plant Journal 35: 104-15 Katifori E, Alben S, Cerda E, Nelson DR, Dumais J. 2010. Foldable structures and the natural design of pollen grains. Proc Natl Acad Sci U S A Kerim T, Imin N, Weinman JJ, Rolfe BG. 2003. Proteome analysis of male gametophyte development in rice anthers. Proteomics 3: 738-51 Kim MC, Chung WS, Yun DJ, Cho MJ. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2: 13-21 Koide H, Kinoshita T, Tanaka Y, Tanaka S, Nagura N, et al. 2006. Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of Ca2+. Biochemistry 45: 11598-604 Larkindale J, Knight MR. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128: 682-95 Levy M, Wang Q, Kaspi R, Parrella MP, Abel S. 2005. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43: 79-96 Li N, Zhang DS, Liu HS, Yin CS, Li XX, et al. 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18: 2999-3014 Liu J, Seul U, Thompson R. 1997. Cloning and characterization of a pollen-specific cDNA encoding a glutamic-acid-rich protein (GARP) from potato Solanum berthaultii. Plant Mol Biol 33: 291-300 Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, et al. 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 102: 10736-41 Ma H. 2005. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56: 393-434 Mahajan S, Pandey GK, Tuteja N. 2008. Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471: 146-58 McCormick S. 1993. Male Gametophyte Development. Plant Cell 5: 1265-75 McCormick S. 2004. Control of male gametophyte development. Plant Cell 16 Suppl: S142-53 Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, et al. 2001. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155: 41-51 Mitsuda N, Takeyasu K, Sato MH. 2001. Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46: 185-92 Peng J. 2009. Gibberellin and jasmonate crosstalk during stamen development. J Integr Plant Biol 51: 1064-70 Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5: 308-16 Reddy AS. 2001. Calcium: silver bullet in signaling. Plant Sci 160: 381-404 Reddy AS, Day IS. 2001. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2: RESEARCH0024 Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K. 2003. Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217: 131-7 Ritu K, Aparna S, Sudip C. 2008. Calmodulin7 Plays an Important Role as Transcriptional Regulator in Arabidopsis Seedling Development. Plant Cell Roberts MR, Foster GD, Blundell RP, Robinson SW, Kumar A, et al. 1993. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J 3: 111-20 Safadi F, Reddy VS, Reddy AS. 2000. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats. J Biol Chem 275: 35457-70 Saibo NJ, Vriezen WH, Beemster GT, Van Der Straeten D. 2003. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33: 989-1000 Schneidereit A, Scholz-Starke J, Sauer N, Buttner M. 2005. AtSTP11, a pollen tube-specific monosaccharide transporter in Arabidopsis. Planta 221: 48-55 Scott RJ, Armstrong SJ, Doughty J, Spielman M. 2008. Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. Mol Plant 1: 611-9 Scott RJ, Spielman M, Dickinson HG. 2004. Stamen structure and function. Plant Cell 16 Suppl: S46-60 Shi YY, Tao WJ, Liang SP, Lu Y, Zhang L. 2009. Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM-GFP system. Plant Cell Rep 28: 1253-64 Stintzi A, Browse J. 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97: 10625-30 Suzuki T, Masaoka K, Nishi M, Nakamura K, Ishiguro S. 2008. Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana. Plant Cell Physiol 49: 1465-77 Takada K, Ishimaru K, Kamada H, Ezura H. 2006. Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. Plant Cell Rep 25: 936-41 Theoharis NT, Sorensen BR, Theisen-Toupal J, Shea MA. 2008. The neuronal voltage-dependent sodium channel type II IQ motif lowers the calcium affinity of the C-domain of calmodulin. Biochemistry 47: 112-23 Tzeng JD, Hsu SW, Chung MC, Yeh FL, Yang CY, et al. 2009. Expression and regulation of two novel anther-specific genes in Lilium longiflorum. J Plant Physiol 166: 417-27 Vizcay-Barrena G, Wilson ZA. 2006. Altered tapetal PCD and pollen wall development in the Arabidopsis MS1 mutant. J Exp Bot 57: 2709-17 Wang CS, Huang JC, Hu JH. 1999. Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol Biol 40: 807-14 Wang CS, Liau YE, Huang JC, Wu TD, Su CC, Lin CH. 1998. Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol 39: 1307-14 Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148: 1201-11 Wang Z, Liang Y, Li C, Xu Y, Lan L, et al. 2005. Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58: 721-37 Wayne S, Hillel F. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151: 35-66 Wilkie GS, Dickson KS, Gray NK. 2003. Regulation of mRNA translation by 5''- and 3''-UTR-binding factors. Trends in Biochemical Sciences 28: 182-8 Wolters-Arts M, Lush WM, Mariani C. 1998. Lipids are required for directional pollen-tube growth. Nature 392: 818-21 Wu XS, McNeil BD, Xu J, Fan J, Xue L, et al. 2009. Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12: 1003-10 Xiong L, Schumaker KS, Zhu JK. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14 Suppl: S165-83 Yang L, Ji W, Zhu Y, Gao P, Li Y, et al. 2010. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61: 2519-33 Yang T, Poovaiah BW. 2000. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 275: 601-7 Yang T, Poovaiah BW. 2002. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277: 45049-58 Yang T, Poovaiah BW. 2003. Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8: 505-12 Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ. 2007. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep 26: 219-28 Yokota E, Tominaga M, Mabuchi I, Tsuji Y, Staiger CJ, et al. 2005. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. Plant Cell Physiol 46: 1690-703 Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, et al. 2007. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19: 3037-57 Zhang GY, Feng J, Wu J, Wang XW. 2010. BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231: 1323-34 Zhang Y, McCormick S. 2007. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104: 18830-5 Zhou L, Fu Y, Yang Z. 2009. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol 51: 751-61 Zonia L. 2010. Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61: 1939-57 Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu WH. 2009. Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51: 438-55 Zou Z, Eibl C, Koop HU. 2003. The stem-loop region of the tobacco psbA 5''UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269: 340-9
摘要: LLP-14和LLP-69是利用抑制扣除雜合法(suppression-subtractive hybridization)從鐵炮百合花藥乾燥時期的cDNA集合庫中所挑出的cDNA片段。利用5′-RACE和3′-RACE得到LLP-14 cDNA長為1,600 bp,可轉譯出492個胺基酸的酸性蛋白質,預測分子量大約為54 kDa。藉由北方墨漬法預測LLP-14 mRNA全長約1,700 bases,可知目前LLP-14 cDNA仍未完整。利用Kyte-Doolittle軟體測出N端具有19個胺基酸的疏水性訊息胜肽(signal peptide),LLP-14為親水性的蛋白。經過序列比對發現LLP-14蛋白與葡萄(70%)、水稻(66%)、和阿拉伯芥(62%)蛋白質具有相當高的相同度(identity),屬於未知功能的蛋白質(unknown protein)。利用5′-RACE和3′-RACE得到LLP-69 cDNA全長為1,934 bp,可轉譯出510個胺基酸的偏鹼性蛋白質,預測分子量為58 kDa。利用北方墨漬法預測全長約2,700 bases,可知目前LLP-69 cDNA仍未完整。利用Kyte-Doolittle軟體預測,發現LLP-69也是親水性的蛋白,沒有訊息胜肽序列,但在蛋白質N端和C端有疑似的進核序列(nuclear localization signal)。經過序列比對之後發現此蛋白和水稻的SF16蛋白有52%的相同性,也和阿拉伯芥的calmodulin 結合蛋白有50%的相同度。利用北方墨漬法分析,顯示出LLP-14和LLP-69都為花藥專一性的表現基因,而且都只表現在花粉成熟時期。LLP-14和LLP-69兩基因的表現,在花粉萌發24小時後仍能偵測到LLP-14的mRNA,而LLP-69的mRNA在花粉萌發32小時仍能偵測到,因此推測LLP-14和LLP-69可能和花粉管的生長有關。利用基因槍將不同的構築載體以花粉專一性啟動子Zm13送入百合花粉中發現GFP-LLP69的融合蛋白會集中在花粉管的營養核(vegetative nucleus)和生殖核(generative nucleus)中。為了進一步探討LLP-69蛋白質,因此選殖可轉譯區全長、LLP-69C以及LLP-69N cDNAs片段放入pET29a載體在大腸桿菌BL21(DE3)中表達蛋白質,以瓊膠純化後的LLP-69C蛋白質打進兔體內產生抗血清,以便進一步分析LLP-69蛋白質。
LLP-14 and LLP-69 clones have been identified from a suppression subtractive cDNA library constructed from mRNA isolated at the desiccation stage of lily (Lilium longiflorum) anthers. The method of 5'- and 3'-RACE PCR was used to obtain the LLP-14 cDNA with a size of 1,600 bp that encodes an acidic poly peptide of 492 amino acids with a calculated molecular mass of 54 kDa. Northern blot analysis showed that LLP-14 mRNA is about 2,690 bases, indicating that the obtained LLP-14 cDNA sequence is incomplete. The hydrophilic LLP-14 protein contains a signal peptide at the N-terminus. Sequence alignment reveals resemblance to LLP-14 is a grape hypothetical protein (70% identity), a rice hypothetical protein (66% identity) and an Arabidopsis unknown protein (62% identity). On the other hand, the method of 5'- and 3'-RACE PCR was used to obtain the LLP-69 cDNA with a size of 1,934 bp that encodes a basic poly peptide of 510 amino acids with a calculated molecular mass of 58 kDa. Northern blot analysis showed that LLP-69 mRNA is about 2,700 bases, indicating that obtained LLP-69 cDNA sequence is incomplete. The hydrophilic LLP-69 protein has a NLS (nucleus localization signal) sequence at N-terminus and C-terminus. Sequence alignment reveals resemblance to LLP-69 is a rice SF16 protein (52% identity) and an Arabidopsis calmodulin binding protein (50% identity). Northern blot analysis indicated that both LLP-14 and LLP-69 mRNAs were specifically expressed in the anther at the stage of pollen maturation during anther development. LLP-14 remained mRNA its level of accumulation in the germinating pollen even 32 hours after germination, and LLP-69 mRNA remained mRNA its level of accumulation in the germinating pollen even 32 hours after germination, indicating that LLP-14 and LLP-69 may play a critical role during pollen tube growth. Particle bombardment of GFP-LLP-69 has demonstrated that LLP-69 protein is located at vegetative and generative nuclei of pollen grains. The coding region of LLP-69, LLP-69C and LLP-69N cDNAs were introduced into pET29a vector and expressed in Escherichia coli BL21 (DE3) . Only LLP-69C fragment was successfully expressed by E.coli. The overexpressed protein was isolated, purified and injected into rabbits to obtain antiserum for further analysis.
其他識別: U0005-0308201015014100
Appears in Collections:生物科技學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.