Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3624
標題: 有機過氧化物-過氧化丁酮失控反應熱危害探討暨反應物不相容性研究
Thermal Runaway Hazard and Incompatible Reaction Analysis for Organic Peroxide - Methyl Ethyl Ketone Peroxide
作者: 張榮興
Chang, Ron-Hsin
關鍵字: Methyl Ethyl Ketone Peroxide
不相容性反應
Thermal Instability
Incompatibility
Runaway Behaviors
Differential Scanning Calorimetry
Vent Sizing Package2
過氧化丁酮
動力學參數
反應到達最大放熱速率所需要的時間
失控反應
出版社: 化學工程學系所
引用: 1. 林永章、彭登志、徐啟銘,2000,“重大化災回顧系列(二)-英國傅立克斯鎮 (Flixborough) 人纖工廠爆炸事故之探討”,化工,第47卷第2期,頁65-83。 2. 李昌樺、楊毓中、徐啟銘,2000,“重大化災回顧系列(一)-義大利薩維梭 (Seveso) 事件”,化工,第47卷第1期,頁163-172。 3. 張榮興、葛維忠、徐啟銘,2000,“重大化災回顧系列(五)-西班牙聖卡羅迪拉 (San Carlos De La) 丙稀槽車爆炸事故之探討”,化工,第47卷第5期,頁97-109。 4. 袁明豪、姚志宏、游逸駿、徐啟銘,2003,“重大化災回顧系列(八)-印度波帕 (Bhopal) 異氰酸甲酯 (methyl isocyanate) 外洩事件之探討”,化工 (Revised)。 5. 王俊仁、繆慈光、徐啟銘,2002, “重大化災回顧系列(七)-美國Phillips公司高密度聚乙烯 (HDPE) 工廠爆炸火災事故探討”,化工,第49卷第1期,頁73-83。 6. 葉博寅,2001,過氧化丁酮熱危害分析研究,碩士論文,國立雲林科技大學。 7. 財團法人工業技術研究院,環境與安全衛生技術發展中心,重大事故資料庫,http://w3.itri.org.tw/accident/。 8. Kao C. S., Hu K. H., 2002, “Acrylic reactor runaway and explosion accident analysis”, Journal of Loss Prevention in the Process Industries, vol. 15, pp. 213-222 9. Ando, T., Fujimoto, Y., Morisaki, S., 1991, “Analysis of Differential Scanning Calorimetric Data for Reactive Chemicals”, Journal of Hazardous Materials, Vol.28, pp. 251-280. 10. Grewer, T., 1994, Thermal Hazards of Chemical Reactions, ELSEVIEE, pp. 23, , New York, USA. 11. 林憲輝,2001,放熱反應系統臨界失控條件及其熱穩定性範圍之釐定與操作,博士論文,國防大學中正理工學院。 12. Smith, D. W., 1982, “Runaway Reaction and Thermal Explosion”, Chemical Engineering, Vol. 89, pp. 79-84. 13. Fierz, H., P. Finck, G. Giger and R. Gygax, 1983, ”Thermal Stable Operatimg Conditions of Chemical Process”, Ciba-Geigy, Loss Prevention operating and safety promotion 4, Vol. 3, pp. A12-A21. 14. 廖蒼生,2004,過氧化二異丙苯之熱危害研究,碩士論文,國立雲林科技大學環境與安全工程研究所。 15. Duh, Y. S., Kao, C. S., Lee, C. and Yu, S. W., 1997, “Runaway Hazard Assessment of Cumene Hyproperoxide form the Cumene Oxidation Process”, Trans. IchemE., Vol. 75, Part B, May pp. 73-80. 16. Wang, Y. W., Shu, C. M., Duh, Y. S. and Kao, C. S., 2001, “Thermal Runaway Hazards of Cumene Hydroperoxide with Contaminants”, Ind. Eng. Chem. Res. Vol. 4, pp. 1125-1132. 17. Gustin, J. L., 2002, “Influence of Trace Impurities on Chemical Reaction Hazards”, Journal of Loss Prevention in the Process Industries, vol. 15, pp. 37-48. 18. Winder, C., 2000, “Incompatibilities of Chemicals”, Journal of Hazardous Materials, vol. A79, pp. 19-30. 19. FORS, 1998, Australian Code for the Transport of Dangerous Goods by Road and Rail (A.D.G. Code), 6th edition, Australian Transport Advisory Council, Federal Office of Road Safety, AGPS, Australian. 20. NFPA, 2006, Code for Hazardous Chemical Data, National Fire Protection Association, Quincy, Massachusetts, U.S.A. 21. US Coast Guard, 1990, CHRIS Hazardous Chemical Data, US Department of Transportation, Government printing Office, U.S.A. 22. Peng D. J., Shu C. M., and Duh Y. S., 2006, “Experimental Study of Incompatible Reactions on Wet Bench Cleaning Stages in Semicondctor Manufacturing Processes”, Journal of Loss Prevention in the Process Industries. Vol. 19, pp.743–753 23. 彭登志,2002,“半導體Wet Bench清洗製程火災預防研究-過氧化氫不相容性探討”,碩士論文,國立雲林科技大學。 24. Martin, J. L., Cadenato, A, Salla, J. M., 1997, “Comparative Studies on the Non-isothermal DSC Curing Kinetics of an Unsaturated Polyester Resin Using Free Radicals and Empirical Models”, Thermochimica Acta, Vol. 306, pp. 115-126. 25. Martin, J. L., 1999, “Kinetic Analysis of an Asymmetrical DSC Peak in the Curing of an Unsaturated Polyester Resin Catalysed with MEKP and Cobalt Octoate”, Polymer, Vol. 40, pp. 3451-3462. 26. Martin, J. L., Laza, J. M., Morras, M. L., 2000, “Study of the Curing Process of a Vinyl Ester Resin by mean of TSR and DMTA”, Polymer, Vol. 41, pp. 4203-4211. 27. Liaw, H. J., Chen, C. J., Yur, C. C., 2001, “The Multiple Runaway-reaction Behavior Prediction of MEK- oxidation Reactions”, Journal Loss Prevention in Process Industrial, Vol. 14, pp. 371-378. 28. Duh, Y. S., Koa, C. S., Hwang, H. H., Lee, W. L., 1998, “Thermal Decomposition Kinetics of Cumene Hydroperoxide”, Transaction of Institution of Chemical Engineers, Vol. 76B, pp. 271-276. 29. Yeh, P. Y., Shu, C. M., Duh., Y. S., 2003, “Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide”, Industrial and Engineering Chemical Research, Vol. 42, pp. 1-5. 30. 趙珏、吳文隆, 2003,“MEKPO 事故回顧及未來預防處理”,強塑廣用新知,頁46-59。 31. Jo, Y.D. and J.Y. Kim, 2002, “Explosion Hazard Analysis in Partially Confined Area,” Korean J. Chem. Eng., 18 (3), pp. 292–296. 32. Borchardt, H. J., Daniels, F., 1957, “The Application of Differential Thermal Analysis to the Study of Reaction Kinetics”, Journal of the American Chemical Society, Vol. 79, pp. 41-.46. 33. 全國法規資料庫,http://law.moj.gov.tw。 34. 徐啟銘、杜逸興、王義文、江世洲,1999,“有機過氧化物之熱爆炸案例分析與防範”,化工技術,第7卷第1期,頁122-133。 35. 王義文,1999,異丙苯過氧化氫不相容性之熱危害分析,碩士論文,國立雲林科技大學。 36. 袁明豪、李婉瑱,2003,“過氧化丁酮之動力學模式建立與臨界爆炸條件釐定”,專題報告,國立雲林科技大學。 37. United Nations, 2005, Recommendations on the Transport of Dangerous Goods, Tests and Criteria, Committee of Experts on the Transport of Dangerous Goods, 2nd Ed., page 327, USA. 38. 莊雅惠,賴瑞楊,2001,過氧化丁酮之熱危害初探,專題報告,國立雲林科技大學。 39. 施多喜,1980,“有機過氧化物MEKPO及BPO之防災”,刑事科學,第29期,頁9-23。 40. Milas, N. A., Golubovic, A., 1959, “Studies in Organic Peroxides. XXV. Preparation, Separation and Identification of Peroxides Derived from Methyl Ethyl Ketone and Hydrogen Peroxide”, Journal of American Chemical Society, Vol. 81, pp. 5824-5626. 41. OSHA, 1989, Methyl Ethyl Ketone Peroxide Organic Method # 77, Occupational Safety and Health Administration, USA. 42. Porkko, P., 1992, “Determination of Airborne Methyl Ethyl Ketone Peroxide”, Fresenius'' Journal of Analytical Chemistry, Vol. 342, pp. 183-185. 43. Sax, N. I, 1989, Dangerous Properties of Industrial Material, Van Nostrand Reinbold, 7th Ed., pp. 409, 821. 44. 行政院勞委會,物質安全資料表資料庫,http://www.cla.gov.tw/ 45. HSE, 1984, A Guide to the Control of Industrial Major Accident Hazards Regulations, HSE, UK. 46. Stull, 1977, “Fundamentals of Fire and Explosion”, AIChE Monograph Series, No. 10, pp. 21-22. 47. Lee, P. R. 1969 “Safe Storage and Transportation of some Potentially Hazardous Materials” J. Appl. Chem., Vol. 19, pp. 345-351. December. 48. Wendlandt, W. W., 1989, Thermal Analysis, Academic Press, 3rd Ed., page 1, New York, USA. 49. Plaats, G. van der, 1992, The Practice of Thermal Analysis, Mettler Toledo. 50. 陳宇敬、王敬恆、葉展安、徐啟銘,2001,“RADEX與DSC於熱分析技術之原理探討及應用比較”,科儀新知,第23卷第2期,頁89-98。 51. 陳進傳,2002,“苯乙烯單體低溫放熱行為之研究”,碩士論文,國立雲林科技大學。 52. Townsend, D. I., and Tou, J. C., 1980, “Thermal Hazard Evaluation by an Accelerating Rate Calorimeter”, Thermochimica Acta, Vol. 37, pp. 1-30. 53. S. Chervina and Glenn T. Bodman, 1997, “Mechanish and Kinetics of Decomposition from Isothermal DSC Data: Development and Application”, Process Safety Progress, Vol. 16, No.2, pp. 94-100. 54. Fisher, H. G. and D. D. Goetz, 1991, “Determination of Self-accelerating Decomposition Temperatures using the Accelerating Rate Calorimeter”, J. Loss Prev. Process Ind., Vol. 4, pp. 305-316. 55. Ozawa, T, 1965, “A New Method of Analyzing Thermogravimetric Data”, Bulletin of the Chemical Society of Japan, Vol. 38, pp. 1881-1886. 56. Duswalt A. A., 1974, “The Practice of Obtaining Kinetic Data by Differential Scanning Calorimetry”, Thermochim. Acta, Vol. 8, pp. 57-68. 57. William J., 1999, A Reviews of DSC Kinetic Methods, Du Pont. 58. CISP, 2000, Formal Kinetic Evaluation (ForK) Tutorial, Thermal Safety Investigation Software, Russia. 59. VSP2 Manual and Methodology, Fauske & Associates, Inc., IL, USA, 2003. 60. Kossoy, A., Benin, A., 1997, “Developments in the Field of Methodology and Software for Thermal Hazards Assessment”, Minutes of 21st Meeting of DIERS Users Group of the AIChE, Pittsburgh, Pennsylvania, USA. 61. Kossoy, A., 2002, “Integrated System for Investigation of Chemical Processes”, Inferently Safer and Assessment of Reaction Hazards Technology Workshop, Yunlin, Taiwan, ROC. 62. Kossoy, A., Podlevskikh, N., Sheinman, I., 2000, “From Calorimetric Data via Kinetic Modeling to Runaway Simulation and Reactor Optimization (Methodology and Software). Assessment and Control of Chemical Processing Hazards, London, England. 63. 彭登志、林永章、王俊仁、李昌樺,雲林縣,“異丙苯過氧化氫與不相容物之熱危害與腐蝕性分析”,國立雲林科技大學環境與安全工程系,民國89年06月。 64. Chang, R. H., Yeh, P. Y., Shu, C. M., Duh., Y. S., 2001, “Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide”, The 17th Annual Conference of Asia Pacific Occupational Safety & Health Organization, Taipei, Taiwan, ROC, September 24-29. 65. Li, X., Koseki, H., Iwata, Y., Mok, Y. S. Decomposition of Methyl Ethyl Ketone Peroxide and Mixtures with Sulfuric Acid. J. Loss Prev. Process Ind. 2004, 17, 23. 66. Fu, Z. M., Li, X. R., Koseki, H., Mok, Y. S. Evaluation on Thermal Hazard of Methyl Ethyl Ketone Peroxide by Using Adiabatic Method. J. Loss Prev. Process Ind. 2003, 16, 389. 67. Tseng, J. M., Shu, C. M., Yu, Y. C. Thermal Hazard Simulations for Methyl Ethyl Ketone Peroxide Induced by Contaminants. Korean J. Chem. Eng. 2005, 22, 797.
摘要: 有機過氧化物因其自身反應機制之複雜,常因熱分解或火災造成嚴重之意外事故。然而除物質自身可能導致失控之意外,製造、運輸及儲存過程中,亦潛藏著物質間不相容性反應之危害。過氧化丁酮 (Methyl Ethyl Ketone Peroxide, MEKPO) 在橡膠工業中常見之硬化劑及起始劑,為反應性之有機過氧化物,其具有不穩定特性,歷年來在台灣、韓國、日本和大陸造成許多重大火災及爆炸事故。 本研究針對 MEKPO 之反應進行熱危害評估,透過危差掃描熱卡計進行 MEKPO 及其不相容性反應物質之昇溫掃描,再藉由模擬軟體來模擬並評估其動力學參數。結果指出 MEKPO 在與上述任何一種不相容物混合時具有高度危害。由其熱譜圖中發現,MEKPO 之放熱起始溫度約為 100℃ 上下,在與微量之不相容性物質反應,造成其放熱起始溫度之降低,而整體熱譜圖亦從原有二只明顯之放熱波峰依不同之不相容物產生明顯之改變,顯示不相容性反應所造成之物質不穩定之情狀。軟體模擬所獲得反應到達最大放熱速率所需要的時間 (Time to Maximum Rate, TMR),當 MEKPO 與不相容性物質混合時,明顯可發現 TMR 的減少,尤其當 MEKPO 與鐵鏽混合時,其減少的幅度更為明顯,亦即當鐵鏽存在於製程或儲槽中,將快速誘發失控反應的發生。 後續以緊急排放處理儀 (Vent Sizing Package2, VSP2) 進行 MEKPO 及其不相容反應之絕熱昇溫測試,研究結果發現 MEKPO 在與微量金屬鐵離子、酸根離子及鹼根離子反應過程中,皆促使反應溫度降低,增加失控反應危害發生之機率,其中鐵離子及鹼根離子,在混合之同時亦產生壓力及溫度上昇之情形,而又以鐵離子之影響最為明顯,因此在製程及儲運條件下,須嚴防此類不相容性物質與MEKPO混合,避免造成難以挽回之危害。
Methyl ethyl ketone peroxide (MEKPO) is extensively employed in the chemical industries. In the past four decades, several thermal explosions hazard with its thermal instability and incompatibility caused fires and explosions have been induced by MEKPO in East Asia. In this study, the thermal decomposition and runaway behaviors of MEKPO with about 1 mass % incompatibilities such as H2SO4, HCl, NaOH, KOH, Fe2O3, FeCl3, and FeSO4 were analyzed by differential scanning calorimetry (DSC) with the following kinetics evaluation to identify the root-cause of the runaway reactions and kinetics-based curve fitting to assess hazardous phenomena via utilized curve fitting to optimize the kinetic parameters. And used Vent Sizing Package2 (VSP2), the adiabatic calorimetry to obtain the thermokinetic data and analyzed the hazardous phenomena. From the thermal curves of pure MEKPO and ones with incompatible substances, all the onset temperatures were advanced, especially with alkaline or iron ion material. In some tests, the incompatible reactions under low temperature conditions were found. To confirm the incompatible reaction hazard phenomena, we thoroughly investigated MEKPO with different incompatibilities by VSP2. From the tests, various onset temperatures, heat of decompositions, adiabatic temperature rises, and self-heat rates could be clearly compared. From the simple calculated kinetics, all the activation energies of incompatible tests were corroborated to be lower than the MEKPO alone in a deeper degree.
URI: http://hdl.handle.net/11455/3624
其他識別: U0005-1010200717393100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1010200717393100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.