Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36245
標題: 楊桃細菌性斑點病菌的Harpin蛋白之生化特性與細菌性病害防治之應用
Biochemical features and application of harpin protein on controlling bacterial disease from Pseudomonas syringae pv. averrhoi
作者: 詹有容
Chan, Yu-Jung
關鍵字: harpin protein
harpin蛋白
type III secretion system
Pseudomonas syringae pv. averrhoi
第三型分泌系統
楊桃細菌性斑點病菌
出版社: 生物科技學研究所
引用: (EPA) U.S.E.P.A. (2000) Messenger: a promising reduced risk biopesticide. PESP (Pesticide Environmental Stewardship Program) Update 3. Akbudak N., Tezcan H., Akbudak B., Seniz V. (2006) The effect of harpin protein on plant growth parameters, leaf chlorophyll, leaf colour and percentage rotten fruit of pepper plants inoculated with Botrytis cinerea. Scientia Horticulturae 109:107-112. Alfano J.R., Bauer D.W., Milos T.M., Collmer A. (1996) Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol Microbiol 19:715-28. Arlat M., Gough C.L., Barber C.E., Boucher C., Daniels M.J. (1991) Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant Microbe Interact 4:593-601. Arlat M., Van Gijsegem F., Huet J.C., Pernollet J.C., Boucher C.A. (1994) PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. Embo J 13:543-53. Bauer D.W., Wei Z.M., Beer S.V., Collmer A. (1995) Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant Microbe Interact 8:484-91. Bleecker A.B., Kende H. (2000) Ethylene: A gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1 Blume B., Nurnberger T., Nass N., Scheel D. (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425-40. Charkowski A.O., Huang H.C., Collmer A. (1997) Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gram-negative bacteria. J Bacteriol 179:3866-74. Charkowski A.O., Alfano J.R., Preston G., Yuan J., He S.Y., Collmer A. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180:5211-5217. Chen C.-H., Linb H.-J., Fengb T.-Y. (1998) An amphipathic protein from sweet pepper can dissociate harpinPss multimeric forms and intensify the harpinPss-mediated hypersensitive response. Physiological and Molecular Plant Pathology 52:139-149. Chen, K.-T. (2000) The characteristics of Pseudomonas syringae from carambola. Department of Plant Pathology, National Chung Hsing University, Taiwan, Master thesis. (in Chinese). Clantin B., Tricot C., Lonhienne T., Stalon V., Villeret V. (2001) Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur J Biochem 268:3937-42. Cohn, J. R., and Martin, G. B. (2005) Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato, Plant J 44, 139-154. Cornelis G.R. (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811-25. Deng W.L., Preston G., Collmer A., Chang C.J., Huang H.C. (1998) Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol 180:4523-31. Dong H., Delaney T.P., Bauer D.W., Beer S.V. (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20:207-15. El-Maarouf H., Barny M.A., Rona J.P., Bouteau F. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett 497:82-4. He S.Y., Huang H.C., Collmer A. (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266. Horsfall J.G., Barratt R.W. (1945) An improved grading system for measuring plant diease.(Abstract). Phytopathology 35:655. Hou P.S. (2004) Cloning and characterization of hrcC operon from Pseudomonas syringae pv. averrhoi. Granduate Institute of Biotechnology, National Chung Hsing University, Taiwan, Master thesis. (in Chinese). Hoyos. M.E. (1996) The Interaction of Harpinpss with Plant Cell Walls. Mol Plant Microbe Interact. Hsu C.C. (2007) Characterization fo effector genes in conserved effector locus of Pseudomonas syringae pv. averrhoi. Granduate Institute of Biotechnology, National Chung Hsing University, Taiwan, Master thesis. (in Chinese). Hsu, S. Y. 1998. Variability and grouping of strains of Xanthomonas campestris pv. vesicatoria from Taiwan. Research Institute of Plant Pathology, National Chung Hsing University, Master thesis. Hu, H. W. (2009) Characterization of orf6 gene in conserved effector locus and translocon genes involved in type III secretion system of Pseudomonas syringae pv. averrhoi. Granduate Institute of Biotechnology, National Chung Hsing University, Taiwan master thesis.(in Chinese.). Huang H.C., Lin R.H., Chang C.J., Collmer A., Deng W.L. (1995) The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol Plant Microbe Interact 8:733-46. Huang H.C., Schuurink R., Denny T.P., Atkinson M.M., Baker C.J., Yucel I., Hutcheson S.W., Collmer A. (1988) Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol 170:4748-56. Huynh T.V., Dahlbeck D., Staskawicz B.J. (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374-7. Innis M.A., Gelfand D.H., Sninsky J.J., White T.J.I. (1990) PCR protocols. San Diego: Academic Press. Ji Z., Song C., Lu X., Wang J. (2010) Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction. Amino Acids. Kim J.G., Jeon E., Oh J., Moon J.S., Hwang I. (2004) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186:6239-47. King E.O., Ward M.K., Raney D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301-7. Kohlhoff M., Dahm A., Hensel R. (1996) Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett 383:245-50. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene 166, 175-176. Kourie J.I., Henry C.L. (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clin Exp Pharmacol Physiol 29:741-53. Kuo C.H. (2007) Characterization of hopAJ1 and hopAJ2 genes from Pseudomonas syringae pv. averrhoi and testing on feasibility of extending flower longevity of Petunia plants transformed with a harpin gene. Granduate Institute of Biotechnology, National Chung Hsing University, Taiwan, Master thesis. (in Chinese). Kvitko B.H., Ramos A.R., Morello J.E., Oh H.-S., Collmer A. (2007) Identification of Harpins in Pseudomonas syringae pv. tomato DC3000, Which Are Functionally Similar to HrpK1 in Promoting Translocation of Type III Secretion System Effectors. J Bacteriol 189:8059-8072. Lee J., Klessig D.F., Nurnberger T. (2001a) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-93. Lee J., Klusener B., Tsiamis G., Stevens C., Neyt C., Tampakaki A.P., Panopoulos N.J., Noller J., Weiler E.W., Cornelis G.R., Mansfield J.W., Nurnberger T. (2001b) HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 98:289-94. Li R., Fan Y. (1999) Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein. Sci China C Life Sci 42:96-101. Liang Z., Xu J.P., Meng X.L., Lu W., Wang J., Xia H. (2009) Improve bioavailability of Harpin protein on plant use PLGA based nanoparticle. J Biotechnol 143:296-301. Lin Y.-C., Hu Y.-M., Hsu S.-T., Tzeng K.-C., Huang H.-C. (2006) Cloning and characterization of exchangeable effector locus of Pseudomonas syringae pv. averrhoi, a new pathogen on Averrhoa carambola. Plant Path. Bull. (Taiwan) 15:139-152. Lindgren P.B., Peet R.C., Panopoulos N.J. (1986) Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol 168:512-22. Malnoy M., Venisse J.S., Chevreau E. (2005) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genetics & Genomes 1:41-49. Miao W., Wang X., Li M., Song C., Wang Y., Hu D., Wang J. (2010a) Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67. Miao W.G., Song C.F., Wang Y., Wang J.S. (2010b) HpaXm from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads for hypersensitive response. J Microbiol Biotechnol 20:54-62. Mueller C.A., Broz P., Cornelis G.R. (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68:1085-95. Niepold F., Anderson D., Mills D. (1985) Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci U S A 82:406-410. Oh J., Kim J.G., Jeon E., Yoo C.H., Moon J.S., Rhee S., Hwang I. (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601-9. Peng J.L., Bao Z.L., Ren H.Y., Wang J.S., Dong H.S. (2004) Expression of harpin(Xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048-1055. Sambrook J., Russell D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Sinn J.P., Oh C.S., Jensen P.J., Carpenter S.C., Beer S.V., McNellis T.W. (2008) The C-terminal half of the HrpN virulence protein of the fire blight pathogen Erwinia amylovora is essential for its secretion and for its virulence and avirulence activities. Mol Plant Microbe Interact 21:1387-97. Sohn S.I., Kim Y.H., Kim B.R., Lee S.Y., Lim C.K., Hur J.H., Lee J.Y. (2007) Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Mol Cells 24:232-9. Strobel N., Ji C., Gopalan S., Kuc J., He S. (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J 9:431-439. Studier F.W., Rosenberg A.H., Dunn J.J., Dubendorff J.W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60-89. Tampakaki A.P., Fadouloglou V.E., Gazi A.D., Panopoulos N.J., Kokkinidis M. (2004) Conserved features of type III secretion. Cell Microbiol 6:805-16. Tanaka R., Taguchi F., Ichinose Y., Toyoda K., Shiraishi T., Yamada T. (2001) Effect of Harpin from four pathovars of Pseudomonas syringae on pea defense responses. J. Gen. Plant Pathol. 67:148-151. Tarafdar P.K., Vedantam L.V., Kondreddy A., Podile A.R., Swamy M.J. (2009) Biophysical investigations on the aggregation and thermal unfolding of harpin(Pss) and identification of leucine-zipper-like motifs in harpins. Biochim Biophys Acta 1794:1684-92. Tsai D.Y. (2003) Cloning and characterization of harpin-coding hrpZPsa and hrpWPsa genes of Pseudomonas syringae isolated from carambola. Graduate Institute of Biotechnology, National Chung Hsing University, M.S. thesis. (in Chinese). Tossi A., Sandri L., Giangaspero A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4-30. Wang X., Li M., Zhang J., Zhang Y., Zhang G., Wang J. (2007) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol Biol Rep 34:189-98. Wei Z.M., Beer S.V. (1993) HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J Bacteriol 175:7958-67. Wei Z.M., Laby R.J., Zumoff C.H., Bauer D.W., He S.Y., Collmer A., Beer S.V. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-8. Wen Y., Huang Z. (1995) Bacterial leaf spot of Averrhoa carambola. Chinese J. Tropical Crops 16: 65-69 (in Chinese).
摘要: Harpin 蛋白是經植物病原細菌第三型分泌系統 (Type III secretion system, TTSS )所分泌,具熱穩定性且為translocon的組成蛋白之一,在植物上會引起過敏性反應 (hypersensitive response, HR),亦有研究指出harpin蛋白可引發植物本身的系統性抗病 (systemic acquire resistance, SAR)以增加植物對於病害的抵抗能力。Pseudmonas syringae pv. averrhoi (Pav)所產生的harpin蛋白HopAK1及HrpZ1即為translocon蛋白群之一;本研究為探討harpin蛋白在病害防治上的應用性以及其於translocon中之功能,構築C端具有6X His短胜肽的HopAK1及HrpZ1蛋白表現載體,使融合蛋白能以親和性管柱 (Ni-NTA affinity column)進行純化以取得大量的純化蛋白,且純化後的融合蛋白可在非寄主植物菸草上誘發過敏性反應,但純化後的HopAK1-His6融合蛋白會在短時間內相互聚集後沉澱且無法再度回溶,經gel filtration實驗後發現HopAK1蛋白會聚集形成接近2000 kDa 的大型分子;以生物資訊軟體預測HopAK1的次級結構,發現胺基酸序列之特性與α-螺旋的組成比例與其他harpin明顯不同但HopAK1仍具有熱穩定性及引發過敏性反應之特性,因此可能為不同類型之harpin。將非水溶性的HopAK1-His6融合蛋白以含有8M Urea的緩衝液回溶進行純化後以階段透析置換成其緩衝液後,並無明顯沉澱現象,而在SDS-PAGE分析中有位移現象,顯示其電荷可能產生改變,但仍可引發過敏性反應;而HopAK1-His6與HrpZ1- His6融合蛋白引發過敏性反應的最低蛋白濃度為50 ng/μl;以剛果紅溶液分別與HopAK1-His6及HrpZ1- His6融合蛋白混合後以波長300nm至700nm偵測析光值,發現加入HrpZ1- His6融合蛋白後產生藍移現象,而加入HopAK1- His6融合蛋白則沒有改變。將濃度3μg/ml的HopAK1-His6與HrpZ1- His6融合蛋白質溶液以噴灑方式施用於番茄植株後,分別經1天或4天後進行挑戰接種番茄細菌性斑點病菌,實驗結果顯示4天後接種之植株發病情形與控制組相比明顯降低並且確實可以增加系統性抗病基因PR-1a的表現量。此外,利用純化HopAK1-His6融合蛋白製備其多株抗體,並以西方墨點法分析,顯示此HopAK1多株抗體可於稀釋倍率2500比1下偵測到濃度為1 pg/μl的HopAK1純化蛋白之訊號,並且也可偵測到Pav在Hrp minimal medium培養基誘導後產生的HopAK1蛋白的訊號;利用融合蛋白與不具有His tag之HopAK1及HrpZ1進行免疫共沉澱分析,結果顯示HopAK1與HrpZ1間確實存在交互作用。
The harpin proteins of phytobacterial pathogenes are secreted via Type III secretion system (TTSS),which are heat stable and are components of translocon. The previous studies indicated that harpin proteins trigger the hypersensitive response (HR) and systemic acquire resistance (SAR). The harpin proteins, HopAK1 and HrpZ1 of Pseudmonas syringae pv. averrhoi HL1 are components of translocon, To investigate the application of harpin protein on bacterial disease control and the interaction with other translocon proteins, we constructed the HopAK1 and HrpZ1 fused with 6X His short peptide in C terminus which could be purified by using Ni-NTA affinity column. Results indicated the purified HopAK1-His6 and HrpZ1-His6 fusion protein could elicit the HR, but the purified HopAK1-His6 fusion protein were aggregated and precipitated. The results of gel filtration experment showed that HopAK1 was congregated into a complex of 2000 kDa in size. According to the prediction of bioinformatics software, the ratio of α-helix in amino acid sequence of HopAK1 is different from other harpins; nevertheless, it still has harpin activity. The HopAK1 in non-soluble fraction was restored by using buffer containing 8M Urea, then replaced the original buffer by dialysis. Then the precipitation of HopAK1 did not occurr, but molecular weight shown in SDS-PAGE analysis was shiffed to be larger molecular weight, this result revealed that the renatured HopAK1 protein might change the charge, and still could elicit the HR. The threshold concentration of HR elicitation was about 50 ng/μl. In the congo red binding assay, HrpZ1-His6 fusion protein showed the blue shift in peak of absorbance, while the HopAK1-His6 fusion protein had no change in absorbance. In the experiment for the controlling bacterial spot diease of tomato Xanthomonas vesicatoria 1 or 4 days after spraying the purified HopAK1-His6 and HrpZ1-His6, the result indicated that the disease severity of bacterial spot decreased 4 days and the expression of systemic acquired resistance related gene PR-1a was induced after harpin treatment than that without treatment. The western blotting probed with HopAK1 antibody showed that the anti-HopAK1 polyclonal antibodies could detect the purified HopAK1 under concentration 1pg/μl and also detect the secretion of HopAK1 of Pav HL1 grown on Hrp minimal medium, and the co-immunpreciptation assay indicated that HopAK1could interact with HrpZ1.
URI: http://hdl.handle.net/11455/36245
其他識別: U0005-1808201017592200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201017592200
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.