Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36247
標題: 蘭花褐斑病菌HrpWAaca蛋白質之特性分析與Acidovorax spp.第三型分泌系統誘導培養基之改良
Characterization of HrpWAaca protein of Acidovorax avenae subsp. cattleyae OAC1 and improvement of hrp gene inducing medium for Acidovorax spp.
作者: 陳羿君
Chen, Yi-Jyun
關鍵字: HrpWAaca
HrpWAaca
Acidovorax avenae subsp. cattleyae
Type III secretion system
蘭花褐斑病菌
第三型分泌系統
出版社: 生物科技學研究所
引用: Abbas, H. K., Bruns, H. A., and Abel, C. A. (2006). Influence of Messenger on Corn Yield and Mycotoxin Contamination in Mississippi. Plant Health Progress. Ahmad, M., Majerczsk, D. R., Pile, S. Hoyas, M. E., Novacky, A., and Coplin, D. L. . (2001). Biological activity of harpin produced by Pantoea stewartii subsp. stewartii. Molecular Plant-Microbe Interactions, 14, 1223-1234. Akeda, Y., and Galan, J. E. (2005). Chaperone release and unfolding of substrates in type III secretion. Nature, 437, 911-915. Alegria, M. C., Docena, C., Khater, L., Ramos, C. H., da Silva, A. C., and Farah, C. S. (2004). New protein-protein interactions identified for the regulatory and structural components and substrates of the type III Secretion system of the phytopathogen Xanthomonas axonopodis pathovar citri. J Bacteriol, 186, 6186-6197. Alfano, J. R., Bauer, D. W., Milos, T. M., and Collmer, A. (1996). Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol Microbiol, 19, 715-728. Alfano, J. R., Collmer, A. (1997). The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol, 179, 5655-5662. Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C., and Boucher, C. A. (1994). PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. Embo J, 13, 543-553. Astua-Monge, G., Freitas-Astua, J., Bacocina, G., Roncoletta, J., Carvalho, S. A., and Machado, M. A. (2005). Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J Bacteriol, 187, 1201-1205. Baker, C. J., Atkinson, M. M., and Collmer, A. (1987). Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Physiology and Biochemistry, 77, 1268-1272. Banu, S., Honore, N., Saint-Joanis, B., Philpott, D., Prevost, M. C., and Cole, S. T. (2002). Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol, 44, 9-19. Blume, B., Nurnberger, T., Nass, N., and Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12, 1425-1440. Bocsanczy, A. M., Nissinen, R. M., Oh, C. S., and Beer, S. V. (2008). HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol, 9, 425-434. Bonas, U. (1994). hrp genes of phytopathogenic bacteria. Curr Top Microbiol Immunol, 192, 79-98. Buttner, D., and Bonas, U. (2002). Getting across--bacterial type III effector proteins on their way to the plant cell. Embo J, 21, 5313-5322. Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y., and Collmer, A. (1998). The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol, 180, 5211-5217. Chen, L., Qian, J., Qu, S., Long, J., Yin, Q., Zhang, C., et al. (2008). Identification of specific fragments of HpaG Xooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology, 98, 781-791. Chen, S.-Y. (2007). Cloniing of the type III secretion system (TTSS) of Acidovorax avenae subsp. citrulli 156 isolated from bitter gourd, and Cell leakage in E. coli caused by overexpression of orf1 involved in assembly of TTSS. Master thesis, Graduate Institute of Biotechnology, National Chung Hsing University (in chinese). Cheng, A.-H., and Huang, T.-C. (1998). Bacterial fruit blotch on melon, and bitter gourd caused by Acidovorax avenae subsp. citrulli. Plant Pathology Bulletin, 7, 216. Cheng, M.-L. (2005). Cloning of a type III secretion system of Acidovorax avenae subsp. citrulli and involvemnet of GALA protein in pathogenicity. Master thesis, Graduate Institue of Biotechnology, National Chung Hsing University (in chinese). Cornelis, G. R. (2006). The type III secretion injectisome. Nat Rev Microbiol, 4, 811-825. Cunnac, S., Boucher, C., and Genin, S. (2004). Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum. J Bacteriol, 186, 2309-2318. Dangl, J. L., Dietrich, R. A., and Richberg, M. H. (1996). Death Don''t Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell, 8, 1793-1807. Degrave, M. F., C. Perino, M. N. Brisset, S. Gaubert, S. Laroche, O. Patrit, and M.-A. Barny. (2008). Erwinia amylovora Type Three-Secreted Proteins Trigger Cell Death and Defense Responses in Arabidopsis thaliana. molecular Plant-Microbe Interactions, 21, 1076-1086. Dong, H.-P. (2003). Molecular dissection of signaling in plant growth enhancement and resistance to insects and drought induced by a harpin. Ph. D. thesis. Nanjing Agricultural University, Nanjing, China. Dong, H., Delaney, T. P., Bauer, D. W., and Beer, S. V. (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J, 20, 207-215. Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1, 316-323. El-Maarouf, H., Barny, M. A., Rona, J. P., and Bouteau, F. (2001). Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett, 497, 82-84. Fouts, D. E., Abramovitch, R. B., Alfano, J. R., Baldo, A. M., Buell, C. R., Cartinhour, S., et al. (2002). Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A, 99, 2275-2280. Frederick, R. D., Ahmad, M., Majerczak, D. R., Arroyo-Rodriguez, A. S., Manulis, S., and Coplin, D. L. (2001). Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol Plant Microbe Interact, 14, 1213-1222. Galan, J. E., and Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science, 284, 1322-1328. Galan, J. E., and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444, 567-573. Gaudriault, S., Brisset, M. N., and Barny, M. A. (1998). HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett, 428, 224-228. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M., and Dangl, J. L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol, 60, 425-449. Haapalainen, M., van Gestel, K., Pirhonen, M., and Taira, S. (2009). Soluble plant cell signals induce the expression of the type III secretion system of Pseudomonas syringae and upregulate the production of pilus protein HrpA. Mol Plant Microbe Interact, 22, 282-290. He, S. Y., Huang, H. C., and Collmer, A. (1993). Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 73, 1255-1266. Hopkins, D. L., Cucuzza, J.D. and Watterson, J.C. (1996). Wet seed treatments for the control of bacterial fruit blotch of watermelon. planst disease, 80, 529-532. Hsu, T.-F. (2006). Regulation of the type Ⅲ secretion system mediated by hrpG and hrpX genes in Acidovorax avenae subsp. citrulli. National Chung Hsing University, Master Thesis. Hsu, S. Y. (1998). Variability and grouping of strains of Xanthomonas campestris pv. vesicatoria from Taiwan. Research Institute of Plant Pathology, National Chung Hsing University, Master thesis Hu, H. W. (2009). Characterization of orf6 gene in conserved effector locus and translocon genes involved in type III secretion system of Psedomonas syringae pv. averrhoi. Master thesis,Graduate Institue of Biotechnology, National Chung Hsing University (in chinese). Huang, H. C., Schuurink, R., Denny, T. P., Atkinson, M. M., Baker, C. J., Yucel, I., et al. (1988). Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol, 170, 4748-4756. Huang, T. C. (1990). Characteristics and control of Pseudomonas cattleyae causing brown spot of Phalaenopsis orchid in Taiwan. Plant Prot. Bull., 32, 327. Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 62, 379-433. Huynh, T. V., Dahlbeck, D., and Staskawicz, B. J. (1989). Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science, 245, 1374-1377. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. I. (1990). PCR protocols. San Diego: Academic Press. Kamdar, H. V., Kamoun, S., and Kado, C. I. (1993). Restoration of pathogenicity of avirulent Xanthomonas oryzae pv. oryzae and X. campestris pathovars by reciprocal complementation with the hrpXo and hrpXc genes and identification of HrpX function by sequence analyses. J Bacteriol, 175, 2017-2025. Steven, V. B., and Kim, J. F. (1998). HrpW of Erwinia amylovora, a New Harpin That Contains a Domain Homologous to Pectate Lyases of a Distinct Class. journal of bacteriology, 180, 5203-5210. King, E. O., Ward, M. K., and Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med, 44, 301-307. Kvitko, B. H., Ramos, A. R., Morello, J. E., Oh, H.-S., and Collmer, A. (2007). Identification of Harpins in Pseudomonas syringae pv. tomato DC3000, Which Are Functionally Similar to HrpK1 in Promoting Translocation of Type III Secretion System Effectors. J Bacteriol, 189, 8059-8072. Latin, R. X. and Hopkins, D. L. (1995). Bacterial fruit blotch of watermelon: The hypothetical exam question becomes reality . plant disease, 79, 761-765. Lee, J., Klusener, B., Tsiamis, G., Stevens, C., Neyt, C., Tampakaki, A. P., et al. (2001). HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A, 98, 289-294. Lopez-Solanilla, E., Bronstein, P. A., Schneider, A. R., and Collmer, A. (2004). HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol Microbiol, 54, 353-365. Mueller, C. A., Broz, P., and Cornelis, G. R. (2008). The type III secretion system tip complex and translocon. Mol Microbiol, 68, 1085-1095. Occhialini, A., Cunnac, S., Reymond, N., Genin, S., and Boucher, C. (2005). Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Mol Plant Microbe Interact, 18, 938-949. Oh, J., Kim, J. G., Jeon, E., Yoo, C. H., Moon, J. S., Rhee, S., et al. (2007). Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem, 282, 13601-13609. Payasi, A., Sanwal, R., and Sanwal, G. G. (2009). Microbial pectate lyases: characterization and enzymological properties. World J Microbiol Biotechnol, 25, 1-14. Peng, J. L., Dong, H. S., Dong, H. P., Delaney, T. P., Bonasera, B. M., and Beer, S. V. (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. physiol molecular plant pathol, 62, 317-326. Preston, J. F., 3rd, Rice, J. D., Ingram, L. O., and Keen, N. T. (1992). Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. J Bacteriol, 174, 2039-2042. Rahme, L. G., Mindrinos, M. N., and Panopoulos, N. J. (1991). Genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pv. phaseolicola. J Bacteriol, 173, 575-586. Rane, K. K., Latin, R. X. (1992). Bacterial fruit blotch if watermelon: association of the pathogen with seed. Plant Dis, 76, 509-512. Reboutier, D., Frankart, C., Briand, J., Biligui, B., Laroche, S., Rona, J. P., et al. (2007). The HrpN(ea) harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant Microbe Interact, 20, 94-100. Reboutier, D., Frankart, C., Briand, J., Biligui, B., Rona, J. P., Haapalainen, M., et al. (2007). Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana. J Cell Sci, 120, 3271-3278. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D. (1996). Systemic Acquired Resistance. Plant Cell, 8, 1809-1819. Saddler, G. S. (1994). Acidovorax avenae subsp. cattleyae. IMI Descriptions of Fungi and Bacteria, 128, 45-46. Sambrook, J., and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, 3rd edn. . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Schaad, N. W., Sowell, J., G. , Goth, R. W., Colwell, R. R., and Webb, R. E. (1978). Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int J Syst Bacteriol, 28, 117-125. Schulte, R., and Bonas, U. (1992a). Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol, 174, 815-823. Schulte, R., and Bonas, U. (1992b). A Xanthomonas Pathogenicity Locus Is Induced by Sucrose and Sulfur-Containing Amino Acids. Plant Cell, 4, 79-86. Strobel, N., Ji, C., Gopalan, S., Kuc, J., and He, S. (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J, 9, 431-439. Tai, T., -M. (2009). Characterization of the diversity in hrcT-GALA region, hrpWAacaOAC1 gene and PE_PGRS (Aave_0456) gene of Acidovorax avenae. Master thesis, Graduate Institue of Biotechnology, National Chung Hsing University (in chinese). Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J., & Kokkinidis, M. (2004). Conserved features of type III secretion. Cell Microbiol, 6, 805-816. Tanaka, R., Taguchi, F., Ichinose, Y., Toyoda, K., Shiraishi, T., and Yamada, T. (2001). Effect of Harpin from four pathovars of Pseudomonas syringae on pea defense responses. J. Gen. Plant Pathol., 67, 148-151. Tang, C.-J. (1997). Studies on bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli. Unpublished Master Thesis, National Chung Hsing University. Torres, M. A., Dangl, J. L., and Jones, J. D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A, 99, 517-522. Wei, Z. M., and Beer, S. V. (1993). HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J Bacteriol, 175, 7958-7967. Wei, Z. M., and Beer, S. V. (1995). hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol, 177, 6201-6210. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A., et al. (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 257, 85-88. Wengelnik, K., and Bonas, U. (1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol, 178, 3462-3469. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., and De Ley, J. (1992). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol, 42, 107-119. Xiao, Y., Lu, Y., Heu, S., and Hutcheson, S. W. (1992). Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol, 174, 1734-1741. Yeh, G. L. (2008). Characterization of the Acidovorax avenae subsp. citrulli HrpW protein. Master thesis, Graduate Institue of Biotechnology, National Chung Hsing University (in chinese). Yip, C. K., Finlay, B. B., and Strynadka, N. C. (2005). Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol, 12, 75-81. Zheng, M. S., Takahashi, H., Miyazaki, A., Hamamoto, H., Shah, J., Yamaguchi, I., et al. (2004). Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta, 218, 740-750. Zhu, W., MaGbanua, M. M., & White, F. F. (2000). Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol, 182, 1844-1853. Zink, R. T., Engwall, J. K., McEvoy, J. L., and Chatterjee, A. K. (1985). recA is required in the induction of pectin lyase and carotovoricin in Erwinia carotovora subsp. carotovora. J Bacteriol, 164, 390-396. Zwiesler-Vollick, J., Plovanich-Jones, A. E., Nomura, K., Bandyopadhyay, S., Joardar, V., Kunkel, B. N., et al. (2002). Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol, 45, 1207-1218.
摘要: 植物病原細菌 Acidovorax avenae subsp. cattleyae (Aaca) OAC1能在蘭花引起細菌性褐斑病 (Brown spot),而A. avenae subsp. citrulli (Aac) 則引起瓜類細菌性斑點病 (Bacterial fruit blotch disease, BFB), 此些病原菌藉由第三型分泌系統 (type three secretion system, TTSS),分泌致病相關蛋白質 (effector) 至植物細胞內,以干擾寄主正常的生理生化反應及防禦機制,進而在寄主植物引發病害,或引起非寄主植物產生過敏性反應 (Hypersensitivity response, HR)。在此研究以loss-of-function策略分析蘭花菌株AacaOAC1的hrpWAaca基因缺失菌株之生物特性,在菸草葉片誘發延遲之過敏性反應,但在寄主蝴蝶蘭和文心蘭所呈現的病原性與野生菌株無明顯差異,顯示HrpWAaca似乎在病原性上並非為必要之蛋白質。經由序列比對發現hrpWAaca序列中含有17.58%的甘胺酸 (glycine)而不含半胱胺酸 (cysteine),且以E. coli BL21 (λDE3)大量表現HrpWAaca-His6融合蛋白之粗萃取溶液及經由Ni-NTA親合性層析管柱純化之HrpWAaca-His6融合蛋白,無論加熱與否皆可於菸草葉片上引發過敏性反應,顯示HrpWAaca-His6蛋白N端harpin domain有生物活性且具熱穩定性。又以HrpWAac156的抗體進行西方雜合分析,結果顯示HrpWAaca經XVM2培養液誘導表現後可被分泌至菌體外,將上述HrpWAaca分析結果與已知harpin蛋白特性相比較,可將HrpWAaca視為一個harpin-like蛋白。HrpWAaca蛋白於C端之Pel domain經PGA果膠分解酵素活性測定方法,證實其具有果膠分解酵素活性。此外以gel filtraction分析顯示,HrpWAaca-His6能以雙聚體 (120 kDa,dimer)、六聚體 (400 kDa,hexamer)和多聚體 (>2000 kDa, oligomer)存在。而以HrpWAaca-His6蛋白溶液施用於番茄植株四天後,可使植株對番茄細菌性斑點病較具有抗病性。此外,以gfp為報導基因尋找合適Aac第三型分泌系統之誘導因子 (induction factor),發現以XVM2為基礎加入西瓜細胞萃取液及絲瓜水之培養基,可以有效誘導第三型分泌系統相關基因hrcC promoter之表現。
Acidovorax avenae subsp. cattleyae (Aaca) OAC1 causes a brown spot disease on Cattleyae, while A. a. subsp. citrulli (Aac) causes Bacterial fruit blotch disease (BFB) on cucurbitaceae. These bacteria causing diseases in host plants or eliciting hypersensitive response (HR) on nonhost plants depend on type III secretion system (T3SS), encoded by hrp/hrc gene cluster. In this study, we analyzed the biological function of hrpWAaca of Aaca by loss-of-function strategy. The hrpWAaca mutant elicited a delayed HR on Nicotiana tabacum, but still maintained the same virulence as its wild type on its host Oncidium and Phalaenopsis. Hence, HrpWAaca might be not play an essential role in pathogenicity. The purified or crude extracted HrpWAaca-His6 proteins could elicit HR with or without heat treatment. Moreover, HrpWAaca-His6 protein contains 17.58% glycine but no cysteine, and HrpWAaca could be secreted into bacterial milieu under T3SS inducing condition. Therefore, HrpWAaca is a harpin-like protein. The Pel domain in C-terminus of HrpWAaca has the pectate lyase activity based on the pel assay with polyglacturonic acid as a substrate. Besides, Gel filtration assay showed the purified HrpWAaca-His6 could be detected as dimer (120 kDa)、hexamer (400 kDa) and oligomer (>2000 kDa) in size. To control the tomato bacterial spot caused by Xanthomonas vesicatoria, HrpWAaca-His6 solution was sprayed onto tomato leaves 1 or 4 days before inoculated with X. vesicatoria. The result showed that HrpWAaca-His6 could reduce bacterial spot severity after 4 days harpin treatment. To improve the T3SS induction medium for Aac, extracts of watermelon suspension cell and loofah were total using gfp as a reporter gene under the control of hrcC promoter. The results indicated that both extracts significantly improved induction efficiency of the XVM2 medium.
URI: http://hdl.handle.net/11455/36247
其他識別: U0005-1808201018301400
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.