Please use this identifier to cite or link to this item:
標題: 水稻SIZ1及LGD1對水稻生長發育之功能分析
Functional analysis of SIZ1 and LGD1 involved in rice growth and development
作者: 唐戈薩
Saminathan, Thangasamy
關鍵字: rice (Oryza sativa)
anther dehiscence
spikelet fertility
SUMO E3 ligase
multiple transcripts
growth and development
SUMO E3 結合酶基因多重轉譯
出版社: 生物科技學研究所
引用: Adam E, Kozma-Bognar L, Kolar C, Schafer E, Nagy F (1996) The Tissue-Specific Expression of a Tobacco Phytochrome B Gene. Plant Physiol 110: 1081-1088 An Ellis E (2006) Solutions to the problem of substitution of ERL 4221 for vinyl cyclohexene dioxide in spurr low viscosity embedding formulations. Microscopy Today 14: 32-33 An G, Jeong DH, Jung KH, Lee S (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59: 111-123 Aravind L, Koonin EV (2000) SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25: 112-114 Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51: 1019-1029 Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741-745 Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-Binding Proteins as Developmental Regulators. Gene Dev 3: 431-437 Bassett CL, Nickerson ML, Farrell RE, Jr., Harrison M (2004) Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner. Mol Genet Genomics 271: 752-760 Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31: 35-40 Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant physiol 137: 1049-1056 Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38: 626-635 Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19: 2952-2966 Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760-1774 Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31: 995-1006 Chen Q, Zhang Y, Johnson DM, Goetinck PF (1999) Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell 10: 2149-2162 Cheng DW, Lin H, Takahashi Y, Walker MA, Civerolo EL, Stenger DC (2010) Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection. BMC Plant Biol 10: 135 Cheng SH, Cline K, Delisle AJ (1994) An Arabidopsis chloroplast RNA-binding protein gene encodes multiple messenger-RNAs with different 5'' ends. Plant physiol 106: 303-311 Chung CD, Liao JY, Liu B, Rao XP, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278: 1803-1805 Dawson J, Sozen E, Vizir I, Van Waeyenberge S, Wilson ZA, Mulligan BJ (1999) Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol 144: 213-222 Fan CH, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112: 1164-1171 Fribourg S, Kellenberger E, Rogniaux H, Poterszman A, Van Dorsselaer A, Thierry JC, Egly JM, Moras D, Kieffer B (2000) Structural characterization of the cysteine-rich domain of TFIIH p44 subunit. J Biol Chem 275: 31963-31971 Fu C, Yang XO, Chen X, Chen W, Ma Y, Hu J, Li S (2009) OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biol (Stuttg) 11: 751-757 Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71: 265-276 Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15: 536-541 Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5: 1217-1229 Goodyer CG, Zogopoulos G, Schwartzbauer G, Zheng H, Hendy GN, Menon RK (2001) Organization and evolution of the human growth hormone receptor gene 5''-flanking region. Endocrinology 142: 1923-1934 Gorguet B, Schipper D, van Lammeren A, Visser RGF, van Heusden AW (2009) ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet 118: 1199-1209 Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, et al (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114: 99-111 Greco R, Ouwerkerk PB, Taal AJ, Sallaud C, Guiderdoni E, Meijer AH, Hoge JH, Pereira A (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270: 514-523 Hanada K (1993) Science of the rice plant morphology. In TaH Matsuo, K., ed, Food and agricultural policy research center, Vol 1, Tokyo, pp 222-258 Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1-12 Hayhurst GP, Bryant LA, Caswell RC, Walker SM, Sinclair JH (1995) CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein. J Virol 69: 182-188 Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: 297-300 Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35: 231-240 Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54: 325-334 Ho SL, Tong WF, Yu SM (2000) Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant physiol 122: 57-66 Hoshikawa K (1989) The growing rice plant : an anatomical monograph, Ed 1st. Nobunkyo, Tokyo Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, et al (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63: 351-364 Huang LX, Yang SG, Zhang SC, Liu M, Lai JB, Qi YL, Shi SF, Wang JX, Wang YQ, Xie Q, Yang CW (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60: 666-678 Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41: 494-497 Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25 Iida K, Go M (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Mol Biol Evol 23: 1085-1094 Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51: 1030-1040 IRGSP (2005) The map-based sequence of the rice genome. Nature 436: 793-800 Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209 Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46: 79-86 Iwata N, Takamure, I., Wu, H.-K., Siddinq, E. A. & Rutger, J. N. (1995) List of genes for various traits (with chromosome and main literature). Rice Genet. Newsl. 12: 61-93 Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907 Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42: 541-544 Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I, et al (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53: 530-540 Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355-382 Karsch-Mizrachi I, Haynes SR (1993) The Rb97D gene encodes a potential RNA-binding protein required for spermatogenesis in Drosophila. Nucleic Acids Res 21: 2229-2235 Keeney S, Cumming AM (2001) The molecular biology of von Willebrand disease. Clin Lab Haematol 23: 209-230 Keijzer CJ (1987) The processes of anther dehiscence and pollen dispersal .1. The opening mechanism of longitudinally dehiscing anthers. New Phytol 105: 487-498 Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37: 301-314 Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100: 11765-11770 Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003b) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130: 3841-3850 Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T (2005) Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiol 138: 1982-1993 Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149: 165-170 Kuhn K, Weihe A, Borner T (2005) Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res 33: 337-346 Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299-306 Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis - Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278: 6862-6872 Lagrange T, Franzetti B, Axelos M, Mache R, Lerbs-Mache S (1993) Structure and expression of the nuclear gene coding for the chloroplast ribosomal protein L21: developmental regulation of a housekeeping gene by alternative promoters. Mol Cell Biol 13: 2614-2622 Landry JR, Mager DL, Wilhelm BT (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet 19: 640-648 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948 Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, et al (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49: 79-90 Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58: 592-605 Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, et al (2003) Control of tillering in rice. Nature 422: 618-621 Li Y-H (1979) Morphology and anatomy of grass family crops. In. Shanghai Science and Technology Press, Shanghai, pp 138-142 Liu B, Liao JY, Rao XP, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. P Natl Acad Sci USA 95: 10626-10631 Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230: 649-658 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408 Ma H (2005) Molecular genetic analyses of microsporogenesis and micro grametogenesis in flowering plants. Annu Rev Plant Biol 56: 393-434 Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176: 288-298 Martin VJ, Mohn WW (1999) An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions. J Microbiol Methods 35: 163-166 Matsui T, Omasa K, Horie T (1999) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot 84: 501-506 Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod Sci 4: 90-93 Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45: 490-495 Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: 2993-3006 Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci USA 103: 17846-17851 Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20: 223-232 Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42: 545-549 Miura K, Jin JB, Hasegawa PM (2007a) Sumoylation, a post-translational regulatory-process in plants. Curr Opin Plant Biol 10: 495-502 Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007b) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19: 1403-1414 Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106: 5418-5423 Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51: 103-113 Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, et al (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102: 7760-7765 Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin alpha subunits from the solitary ascidian, Halocynthia roretzi. J Immunol 166: 1710-1715 Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50: 751-766 Moon S, Jung KH, Lee DE, Lee DY, Lee J, An K, Kang HG, An G (2006) The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells 21: 147-152 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325 Navarro-Avino JP, Bennett AB (2005) Role of a Ca2+-ATPase induced by ABA and IAA in the generation of specific Ca2+ signals. Biochem Biophys Res Commun 329: 406-415 Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22: 29-38 Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, et al (2010) Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33: 1923-1934 Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31: 1-12 Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7: 203-206 Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA 105: 3646-3651 Rehman S, Yun SJ (2006) Developmental regulation of K accumulation in pollen, anthers, and papillae: are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization in barley (Hordeum vulgare L.) regulated by changes in K concentration? J Exp Bot 57: 1315-1321 Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y (2009) Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9: 3409-3412 Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K (2003) Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217: 131-137 Saitou N, Nei M (1987) The Neighbor-Joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425 Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, et al (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106: 1396-1408 Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11: 297-322 Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041-1061 Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416: 701-702 Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60: 2561-2574 Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant physiol 134: 1069-1079 Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16: S46-S60 Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53: 399-419 Steiner-Lange S, Unte US, Eckstein L, Yang CY, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34: 519-528 Suzuki R, Shindo H, Tase A, Kikuchi Y, Shimizu M, Yamazaki T (2009) Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa. Proteins 75: 336-347 Takahashi Y, Kikuchi Y (2005) Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains. J Biol Chem 280: 35822-35828 Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33: 513-520 Tanaka T, Koyanagi KO, Itoh T (2009) Highly diversified molecular evolution of downstream transcription start sites in rice and Arabidopsis. Plant Physiol 149: 1316-1324 Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY (2010) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol (doi: 10.1111/j.1469-8137.2010.03538.x) Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ (2009) An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot 61: 439-451 Upadhyaya NM, Zhou XR, Zhu QH, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun DW, Santhoshkumar C, et al (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29: 547-559 Vera A, Hirose T, Sugiura M (1996) A ribosomal protein gene (rpl32) from tobacco chloroplast DNA is transcribed from alternative promoters: Similarities in promoter region organization in plastid housekeeping genes. Mol Gen Genet 251: 518-525 Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015-1068 Wang HJ, Wan AR, Jauh GY (2008) An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant physiol 147: 1619-1636 Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57: 498-510 Wang Y, Kumar PP (2007) Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. J Exp Bot 58: 533-544 Weitzel JM, Grott S, Radtke C, Kutz S, Seitz HJ (2000) Multiple promoters direct the tissue-specific expression of rat mitochondrial glycerol-3-phosphate dehydrogenase. Biol Chem 381: 611-614 White PT (1994) "Rice: The Essential Harvest" In Rice almanac, Vol 185. National Geographic, IRRI, Philippines, pp 48-79 Wohlschlegel JA, Johnson ES, Reed SI, Yates JR (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279: 45662-45668 Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40: 761-767 Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12: 1591-1606 Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97: 267-274 Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19: 534-548 Yasuor H, Abu-Abied M, Belausov E, Madmony A, Sadot E, Riov J, Rubin B (2006) Glyphosate-induced anther indehiscence in cotton is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation. Plant physiol 141: 1306-1315 Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142: 1548-1558 Zhu J-K, Hasegawa, P.M., Bressan, R.A., Niu, X. (1996) Multiple transcripts of a calcium-binding protein gene from Atriplex nummularia are differentially regulated by developmental and environmental stimuli. Physiol Plantarum 97: 499-506 Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135: 1514-1525 Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222: 604-612 Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48: 687-698
摘要: 稻米是世界上近半數人口的主要糧食作物來源。而水稻植株的形態對於稻米的產量有著關鍵性影響,其形態結構是由株植的高低、分蘗的多寡、角度以及花序的形態所決定。此外,有性生殖的健全發育及授粉作用的成功與否也顯著地影響稻米產量,例如,花藥的開裂異常都可能造成雄蕊的不稔性,而雄不稔會顯著的降低作物的產量。因此,如何有效地利用功能基因組的研究策略對水稻重要性狀例如雄不稔、分蘗的多寡與角度、開花時期和花序形態等性狀的研究,可增進我們對於這些性狀如何受到基因調控機制的認知及未來的應用性。而T-DNA插入突變體是各種生物之功能基因組研究的重點之一,我們利用台灣水稻功能基因組研究之突變族資料庫中(TRIM database) 搜尋近20株與上述性狀相關的T-DNA插入突變體,本論文即針對其中兩個基因進行功能性分析與研究。 本論文的第一個部分,我們以siz1 T-DNA突變株和SIZ1-RNAi轉殖株兩種不同的遺傳學方法來証明了水稻SIZ1是一具有生物功能的SUMO E3黏接酶並參與調控水稻花藥開裂的過程。遺傳分析的結果顯示siz1 T-DNA突變株為單一T-DNA插入而導致了一個隱性的突變,此突變株的外表型會和T-DNA插入基因型共同分離至子代中。siz1 T-DNA突變株和SIZ1-RNAi轉殖株除了在植株的高度、分蘗的多寡及種子數目方面較野生型水稻有顯著降低的外表型,它們同時也造成花藥的開裂異常,但對花粉的活性卻無任何不良的影響;近一步分析發現siz1突變株花藥無法正常開裂可能肇因於開花期前花藥的內皮層發育異常所致。特別值得一提的是阿拉伯芥AtIRX和玉米ZmMADS2基因被發現是花藥開裂時花藥內皮層的發育所必需,而水稻這兩個基因的同源基因在siz1突變株中的表現量有明顯降低的現象。和野生型水稻相較,在siz1 T-DNA突變株和SIZ1-RNAi轉殖株的成熟小穗中高分子量蛋白質被sumoylation的樣式有隨著SIZ1基因表現量下降而減少的情形。在以基因槍轟擊洋葱表皮細胞的實驗中,我們發現位於SIZ1蛋白質羧基端的細胞核定位序列 (NLS) 已足夠將其本身帶入細胞核中。綜合所有的結果顯示SIZ1為一具功能的SUMO E3黏合酶參與調控水稻花藥的開裂過程。 論文第二部分是著重於研究一未知功能的基因LGD1是如何調控水稻分蘗和花序的發育。在這部分的研究中亦是利用lgd1 T-DNA突變株和LGD1-RNAi轉殖株來分析水稻LGD1的功能為何。我們發現由於T-DNA的插入而導致一隱性的突變,使得突變株呈現生長遲緩、分蘗數目減少、植株高度降低、花序的結構改變以及稻米的產量縮減等性狀,因此將此基因命名為lagging growth and development1 (lgd1)。LGD1-RNAi轉殖株和lgd1突變株有著相似的外表型。lgd1突變使得未延長的節間 (internode) 數目下降進而造成了分蘗數的減少;植株高度的降低是由於其細胞數目減少所致。水稻LGD1基因為單一基因,可轉譯出一具有vWA domain的蛋白質,在高梁中也有此基因的同源基因存在。從5’-RACE、GUS分析、RT-PCR和北方墨漬的結果中發現LGD1基因的各個多重轉錄之間的表現是具有時間及空間上的特異性。我們利用5’-RACE聚合酶連鎖反應技術獲得LGD1的多重轉錄片段,再利用螢光酵素 (Luciferase) 證實LGD1不同長度的起動子 (promoter) 區域均具有轉錄活性。LGD1-GFP融合蛋白質同時存在於細胞質及細胞核中。綜合以上結果我們推測LGD1基因藉由不同的起動子片段和不同的轉錄起始位置 (Transcription Start Sites) 來產生多重轉錄進而調控著營養生長及生殖生長,但其詳細的分子細胞調控機制則有待深入的探討。未來將近一步設法找出直接參與SIZ1及LGD1 作用的下游分子和其詳細的分子細胞調控機制,期待相關研究將會在經水稻生物科技在榖類的改良過程中能有其重要應用價值。
Rice is a major staple food for nearly half of the world's population and rice plant architecture including plant height, tiller number and angle, and panicle morphology is crucial for grain yield. In addition to these characteristics, the higher grain production of rice depends on successful sexual reproduction. Male sterility, caused by various defects including anther dehiscence, has adverse effects on agricultural productivity and significantly reduces the crop yield. The phenomenon of male sterility is highly exploited to produce successful hybrids with higher yield. By taking the advantage of available resources of functional genomics and T-DNA insertional mutants, functional studies of the tagged genes with important characters such as male sterility, tillering, early flowering and panicle morphology are the main foci of this dissertation. In the first part, I provided the experimental evidence for the biological function of the SUMO E3 ligase, SIZ1, in rice for anther dehiscence. In this study, we used two genetic approaches, the siz1 T-DNA mutant and SIZ1-RNAi transgenic plants, to characterize the function of rice SIZ1. Genetic results revealed co-segregation of single T-DNA insertional recessive mutation with the observed phenotypes in siz1. In addition to showing reduced plant height, tiller number, and seed set percentage, both siz1 mutant and SIZ1-RNAi transgenic plants showed obvious defects in anther dehiscence but not in pollen viability. The anther indehiscence in siz1 was due to defects in endothecium development before anthesis. Interestingly, the rice orthologs of AtIRX and ZmMADS2, which are essential for endothecium development during anther dehiscence, were significantly downregulated in siz1. Compared to the wild-type, the sumoylation profile of high molecular weight proteins in mature spikelet was significantly reduced in siz1 and SIZ1-RNAi line that showed notable reduction in SIZ1 expression. The NLS located in SIZ1 C-terminus was sufficient for its nuclear targeting in bombarded onion epidermis. All results suggest the functional role of SIZ1, a SUMO E3 ligase, in regulating rice anther dehiscence. The second part of this dissertation mainly addresses the functional characterization of an unknown gene regulating tillering and panicle development. Two genetic approaches, T-DNA insertional mutant and RNAi transgenic lines, were used to characterize its functions. Later T-DNA insertion recessive mutant was named as lagging growth and development1 (lgd1), which exhibited slow growth, reduced tillers and plant height, altered panicle architecture and grain yield. LGD1-RNAi plants showed similar phenotypes found in the lgd1. Reduced number of unelongated internodes caused few tiller numbers and semi-dwarf was due to reduced number of cells in the lgd1 mutant. LGD1, encoding a vWA domain-containing protein(s), is a single gene in rice and has ortholog in sorghum. Interestingly, 5'-RACE, GUS assay, RT-PCR and RNA blot revealed the existence of multiple transcripts and distinctive spatiotemporal expression of LGD1 transcripts. Additionally, 5'-RACE-PCR and luciferase promoter assay were used to clone multiple transcripts and to analyze different promoters of LGD1, respectively. The LGD1-GFP fusion protein is located both in the nucleus and cytoplasm. We propose that LGD1 regulates both vegetative and reproductive growth through multiple transcripts from different promoters and TSSs and the regulatory mechanism is yet to be studied. Notably, the direct downstream targets of these genes SIZ1 and LGD1 with known mechanisms will shed light on multiple phenotypes towards crop improvement through rice biotechnology.
其他識別: U0005-1901201116550000
Appears in Collections:生物科技學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.