Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36249
標題: 水稻OSCK1及其交互作用蛋白OIP30於調控花粉發育、花粉萌發與花藥開裂之角色探討
OSCK1 and its interacting protein OIP30 may regulate pollen development, pollen germination, and anther dehiscence
作者: 歐天永
Eu, Tien-Inn
關鍵字: pollen development
花粉發育
pollen germination
anther dehiscence
花粉萌發
花藥開裂
出版社: 生物科技學研究所
引用: 李鐘財. (2000). 水稻花粉成熟期專一性表現基因OSCK1之選殖與分析,國立中興大學,台中市 汪承偉. (2003). 利用酵母菌雙雜交法篩選可與OSCK1結合的水稻花粉蛋白,國立中興大學,台中市 陳婉潔. (2003). 水稻花粉結鈣激活酶OSCK1之基因表現、蛋白胞內分部位置與基因轉殖植物分析,國立中興大學,台中市 林立菁, (2005). 以酵母菌雙雜交法系統分析水稻結鈣激活酶與其及結合蛋白質之交互作用,國立中興大學,台中市 林忠威. (2007). 水稻結鈣激活酶基因群之表現分布及其僅於花粉大量表達成員之功能探討,國立中興大學,台中市 蘇倖民, (2009). 水稻花粉結鈣激活酶OSCK1在花粉萌發中扮演重要的角色,國立中興大學,台中市 Ariizumi, T., Hatakeyama, K., Hinata, K., Inatsugi, R., Nishida, I., Sato, S., Kato, T., Tabata, S., and Toriyama, K. (2004). Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39, 170-181. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M., Furuhashi, H., Mujin, T., Takaiwa, F., Wu Cy, C.Y., Tada, Y., Satozawa, T., Sakamoto, M., and Shimada, H. (2002). Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14, 619-628. Asano, T., Tanaka, N., Yang, G., Hayashi, N., and Komatsu, S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46, 356-366 Bamburg, J.R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15, 185-230. Bauer, A., Chauvet, S., Huber, O., Usseglio, F., Rothbacher, U., Aragnol, D., Kemler, R., and Pradel, J. (2000). Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19, 6121-6130. Berger, F., Hamamura, Y., Ingouff, M., and Higashiyama, T. (2008). Double fertilization - caught in the act. Trends Plant Sci 13, 437-443. Bibikova, T.N., Zhigilei, A., and Gilroy, S. (1997). Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203, 495-505. Blancaflor, E.B. (2002). The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21, 120-136. Bosch, M., Cheung, A.Y., and Hepler, P.K. (2005). Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138, 1334-1346. Chehab, E.W., Patharkar, O.R., and Cushman, J.C. (2007). Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum. Planta 225, 783-799. Chehab, E.W., Patharkar, O.R., Hegeman, A.D., Taybi, T., and Cushman, J.C. (2004). Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135, 1430-1446. Chen, C.Y.-h., Cheung, A. Y., and Wu, H. -m. (2003). Rac-like GTPase and actin depolymerizing factor (ADF) mediate pollen germination and tube growth. Plant Cell 15, 237-249. Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M., and Cheung, A.Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14, 2175-2190. Chen, Y.C., and McCormick, S. (1996). sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122, 3243-3253. Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129, 469-485. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Curr Biol 6, 325-330. Cho, S.G., Bhoumik, A., Broday, L., Ivanov, V., Rosenstein, B., and Ronai, Z. (2001). TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. Mol Cell Biol 21, 8398-8413. Datta, R., Chamusco, K.C., and Chourey, P.S. (2002). Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130, 1645-1656. Derksen, J., Ruttens, T., van Amstel, T., de Win, A., Doris, F., and Steer, M. (1995). Regulation of polen tube growth. Acta Bot Neerl. 44, 93-119. Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32, 457-466. Edlund, A.F., Swanson, R., and Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16 Suppl, S84-97. Estruch, J.J., Kadwell, S., Merlin, E., and Crossland, L. (1994). Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91, 8837-8841. Etard, C., Wedlich, D., Bauer, A., Huber, O., and Kuhl, M. (2000). Expression of Xenopus homologs of the beta-catenin binding protein pontin52. Mech Dev 94, 219-222. Evans, N.H., McAinsh, M.R., and Hetherington, A.M. (2001). Calcium oscillations in higher plants. Curr Opin Plant Biol 4, 415-420. Geitmann, A., Snowman, B.N., Emons, A.M., and Franklin-Tong, V.E. (2000). Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell 12, 1239-1251. Golovkin, M., and Reddy, A.S.N. (2003). A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci USA 100, 10558-10563. Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., and Yang, Z. (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169, 127-138. Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., and An, G. (2006). Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47, 1457-1472. Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci 5, 154-159. Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding Ca(2+) signals through plant protein kinases. Annu Rev Plant Biol 55, 263-288. Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H., and Harmon, A.C. (1991). A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252, 951-954. Hepler, P.K. (1997). Tip growth in pollen tubes: Calcium leads the way. Trends Plant Sci 2, 79-80. Hepler, P.K., Vidali, L., and Cheung, A.Y. (2001). Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17, 159-187. Hernandez Sebastia, C., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428, 81-91. Heslopharrison, J., and Heslopharrison, Y. (1989). Conformation and Movement of the Vegetative Nucleus of the Angiosperm Pollen-Tube - Association with the Actin Cytoskeleton. J Cell Sci 93, 299-308. Higgs, H.N., and Pollard, T.D. (2001). Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 70, 649-676. Hong, Y., Takano, M., Liu, C.M., Gasch, A., Chye, M.L., and Chua, N.H. (1996). Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Mol Biol 30, 1259-1275. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132, 666-680. Huang, S., Blanchoin, L., Chaudhry, F., Franklin-Tong, V.E., and Staiger, C.J. (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem 279, 23364-23375. Hwang, I., Sze, H., and Harper, J.F. (2000). A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97, 6224-6229. Hwang, J.U., Vernoud, V., Szumlanski, A., Nielsen, E., and Yang, Z. (2008). A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18, 1907-1916. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., and Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191-2209. Ito, T., Nakata, M., Fukazawa, J., Ishida, S., and Takahashi, Y. (2010). Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. Plant Cell 22, 1592-1604. Iwakawa, H., Shinmyo, A., and Sekine, M. (2006). Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45, 819-831. Johnson, S.A., and McCormick, S. (2001). Pollen germinates precociously in the anthers of raring-to-go, an Arabidopsis gametophytic mutant. Plant Physiol 126, 685-695. Kanemaki, M., Kurokawa, Y., Matsu-ura, T., Makino, Y., Masani, A., Okazaki, K., Morishita, T., and Tamura, T.A. (1999). TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274, 22437-22444. Kawasaki, T., Hayashida, N., Baba, T., Shinozaki, K., and Shimada, H. (1993). The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme I is specifically expressed in developing rice seeds. Gene 129, 183-189. Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6, 262-267. Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua, N.H. (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145, 317-330. Lalanne, E., and Twell, D. (2002). Genetic control of male germ unit organization in Arabidopsis. Plant Physiol 129, 865-875. Lee, S.S., Yoon, G.M., Rho, E.J., Moon, E., and Pai, H.S. (2006). Functional characterization of NtCDPK1 in tobacco. Mol Cells 21, 141-146. Lee, Y.J., Szumlanski, A., Nielsen, E., and Yang, Z. (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181, 1155-1168. Li, H., Lin, Y., Heath, R.M., Zhu, M.X., and Yang, Z. (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731-1742. Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., and Zhang, D.B. (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014. Li, Y.Q., Zhang, H. Q., Pierso, E. S., Huang, H. F., Hepler, P. K., and Cresti, M. (1996). Enforced growth-rate fluctuatuion causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta 200, 41-49. Lin, Y., and Yang, Z. (1997). Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth. Plant Cell 9, 1647-1659. Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., and Hepler, P.K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95-104. Malho, R., and Trewavas, A.J. (1996). Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. Plant Cell 8, 1935-1949. Malho, R., Read, N.D., Trewavas, A.J., and Pais, M.S. (1995). Calcium Channel Activity during Pollen Tube Growth and Reorientation. Plant Cell 7, 1173-1184. Malho, R., Read, N. D., Pais, M, and Trewavas, A.J. (1994). Role of cytosolic calcium in the reorientation of pollen tube growth. plant Journal 5, 331-341. Matsui, T., Omasa, K., and Horie, T. (1999). Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot 84, 501-506. McCormick, S. (1993). Male Gametophyte Development. Plant Cell 5, 1265-1275. McCormick, S. (2004). Control of male gametophyte development. Plant Cell 16 Suppl, S142-153. McCubbin, A.G., Ritchie, S.M., Swanson, S.J., and Gilroy, S. (2004). The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J 39, 206-218. McGough, A. (1998). F-actin-binding proteins. Curr Opin Struct Biol 8, 166-176. McNeil, K.J., and Smith, A.G. (2010). A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta 231, 793-808. Messerli, M., and Robinson, K.R. (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110 ( Pt 11), 1269-1278. Moutinho, A., Trewavas, A.J., and Malho, R. (1998). Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10, 1499-1510. Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., Davis, R.M., Hatton, J., Harmon, A.C., and Harper, J.F. (2009). Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59, 528-539. Neuwald, A.F. (1999). The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function. Structure 7, R19-23. Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S., Rosso, M.G., Ache, P., Flugge, U.I., and Schneider, A. (2005). The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17, 760-775. Nonomura, K., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., Hirochika, H., and Kurata, N. (2007). A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583-2594. Ogura, T., and Wilkinson, A.J. (2001). AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 6, 575-597. Patharkar, O.R., and Cushman, J.C. (2000). A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24, 679-691. Patharkar, O.R., and Cushman, J.C. (2006). A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta 225, 57-73. Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M., and Hepler, P.K. (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6, 1815-1828. Potocky, M., Jones, M.A., Bezvoda, R., Smirnoff, N., and Zarsky, V. (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174, 742-751. Qiu, X.B., Lin, Y.L., Thome, K.C., Pian, P., Schlegel, B.P., Weremowicz, S., Parvin, J.D., and Dutta, A. (1998). An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 273, 27786-27793. Raghavan, V. (1988). Anther and pollen development in rice (Oryza sativa). Amer J Bot 75, 183-186. Rathore, K.S., Cork, R.J., and Robinson, K.R. (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148, 612-619. Rottbauer, W., Saurin, A.J., Lickert, H., Shen, X., Burns, C.G., Wo, Z.G., Kemler, R., Kingston, R., Wu, C., and Fishman, M. (2002). Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111, 661-672. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23, 319-327. Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11, 691-706. Sivitz, A.B., Reinders, A., and Ward, J.M. (2008). Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147, 92-100. Staiger, C.J., Gibbon, B. C., Kovar, D. R., and Zonlia, L. E. (1997). Profilin and actin depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci 2, 275-281. Steer, M.W., and Steer, J. M. (1989). Pollen tube tip growth. New Phytol. 111, 323-358. Stintzi, A., and Browse, J. (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97, 10625-10630. Tao, J., Zhang, L., Chong, K., and Wang, T. (2007). OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. Plant J 51, 919-930. Twell, D., Park, S. K. and Lalanne, E. (1998). Asymetric division and cell-fate determination in developing pollen. Trends Plant Sci 3, 305-310. Vidali, L., McKenna, S.T., and Hepler, P.K. (2001). Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12, 2534-2545. Vitart, V.V., Christodoulou, J., Huang, J.F., Chazin, W.J., and Harper, J.F. (2000). Intramolecular activation of a Ca(2+)-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase. Biochemistry 39, 12102. Woo, M.O., Ham, T.H., Ji, H.S., Choi, M.S., Jiang, W., Chu, S.H., Piao, R., Chin, J.H., Kim, J.A., Park, B.S., Seo, H.S., Jwa, N.S., McCouch, S., and Koh, H.J. (2008). Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54, 190-204. Wood, M.A., McMahon, S.B., and Cole, M.D. (2000). An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5, 321-330. Wu, H.M., and Cheun, A.Y. (2000). Programmed cell death in plant reproduction. Plant Mol Biol 44, 267-281. Xie, X., Chen, Y., Xue, P., Fan, Y., Deng, Y., Peng, G., Yang, F., and Xu, T. (2009). RUVBL2, a novel AS160-binding protein, regulates insulin-stimulated GLUT4 translocation. Cell Res 19, 1090-1097. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935. Yalovsky, S., Rodr Guez-Concepcion, M., and Gruissem, W. (1999). Lipid modifications of proteins - slipping in and out of membranes. Trends Plant Sci 4, 439-445. Yang, Z. (2008). Cell polarity signaling in Arabidopsis. Annu Rev Cell Dev Biol 24, 551-575. Yoon, G.M., Dowd, P.E., Gilroy, S., and McCubbin, A.G. (2006). Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18, 867-878. Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S., and Tang, W.H. (2008a). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148, 1368-1379. Zhang, D.S., Liang, W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J., and Zhang, D.B. (2008b). Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1, 599-610. Zheng, Z.L., and Yang, Z. (2000). The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44, 1-9. Zhou, L., Fu, Y., and Yang, Z. (2009). A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol 51, 751-761. Zuo, L., Li, S., Chu, M., Wang, S., Deng, Q., Ding, L., Zhang, J., Wen, Y., Zheng, A., and Li, P. (2008). Phenotypic characterization, genetic analysis, and molecular mapping of a new mutant gene for male sterility in rice. Genome 51, 303-308.
摘要: 由於水稻之OSCK1 (Oryza sativa CDPK 1)與其交互作用蛋白OIP30 (OSCK1-interacting protein 30,預測為一RuvB-like DNA解螺旋酶)皆主要在成熟花粉中表現,據而判斷此二蛋白角色可能影響花粉的發育,或是調控花粉管的萌發與生長,為了釐清其角色,本論文進行轉殖植物分析。使用花粉專一性的Zm13啟動子驅動轉錄,分別構築可使OSCK1或OIP30大量表現或基因靜默的水稻轉殖株。為了避免因大量表現具有活性的蛋白而經常衍生非自然的性狀導致誤判,故本實驗著重分析不具酶活性的OSCK-CI (catalytically inactive)突變型蛋白之大量表達轉殖株。有趣的是,單一基因插入pOSCK1-CI轉殖株無法獲得同型合子植株,導致雄不稔。在pOSCK1-CI轉殖株花粉,雖然其內部構造與存活率皆正常;在花粉外形,大小和活體外萌發率卻造成性狀改變,惟程度不一,且與其蛋白的表現量相對應,此現象暗示pOSCK1-CI產生顯性抑制作用 (dominant-negative effect)而影響花粉的發育,萌發和延長。相對的在OIP30基因靜默轉殖株,其花粉活體外萌發率亦降低,顯示OIP30與OSCK1部份性狀相似。pOSCK1-WT轉殖株亦會造成雄不稔,花粉卻並未發現明顯性狀。最後,為了檢查pOSCK1-CI品系花粉於柱頭上之萌發是否確實低落?檢查授粉閉穎後的小穗花,發現轉殖空載體的控制組與pOSCK1-WT轉殖品系絕大多數小穗花內均有難以計數的花粉粒黏附於柱頭上,而意外的是,pOSCK1-CI大量表達品系之柱頭上經常僅有極少數花粉粒黏附,pOSCK1-WT或控制組並無此現象,推測可能是花藥延遲開裂所致,由以上結果推測OIP30確實為OSCK1下游受質蛋白,參與調控花粉的發育與花藥開裂。
Since OSCK1 (Oryza sativa CDPK 1) and its interacting protein OIP30 (OSCK1-interacting protein 30, a putative RuvB-like DNA helicase) share overlapped pollen-predominant expression pattern in rice, they may play critical roles in pollen development, pollen germination or tube elongation processes, etc. To investigate functions of both genes in pollen, transgenic rice lines either overproduce or silence gene expressions driven by Zm13, a pollen-specific promoter, were analyzed in this study. To avoid misleading phenomenon caused simply by overwhelmed transgene products in cell, overexpressing a catalytically-inactive (CI) version of OSCK1 was employed for investigation. Interestingly, homozygoue single insertion line could not be obtained for the pOSCK1-CI plants, indicating a male-sterility. In OSCK1-CI transgenic lines, althouth the internal structure and viability of pollen grains remained unchanged; their shape, size, and in vitro germination rate were more or less affected, with correlations to the expression levels of OSCK1-CI proteins. Such a phenomenon suggests a dominant-negative effect of OSCK1-CI in regulating pollen development, and likely the followed pollen germination and tube elongation processes. Coincidently, pollen grains from OIP30-silenced lines also exhibited a decreased germination rate in vitro, implicating overlapped role between OSCK1 and OIP30. It is noted that pOSCK1-WT transgenic lines were also male-sterile, although no phenotypes could be observed for their pollen grains. Moreover, examination of spikelets after anthesis revealed a distinctive phenotype, with only very few pollen grains shed on stigma, in most of the stigma from pOSCK1-CI but not form pOSCK1-WT or vector transformed lines. These observations suggested that OSCK1, probably act through OIP30, involve in pollen development and anther maturation processes.
URI: http://hdl.handle.net/11455/36249
其他識別: U0005-1908201016071400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201016071400
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.