Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3626
標題: 共晶SnZn銲料與塊材和薄膜Cu基材間界面反應之探討
Interfacial reactions of eutectic SnZn solder on bulk and thin-film Cu substrates
作者: 陳志豪
Chen, Chih-hao
關鍵字: eutectic SnZn solder
共晶錫鋅銲料
Interfacial reactions
bulk and thin-film Cu
界面反應
塊材與薄膜銅
出版社: 化學工程學系所
引用: 七、 參考文獻 1. J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, “Role of Ag in the Formation of Interfacial Intermetallic Phases in Sn-Zn Solder”, Journal of Electronic Materials, Vol. 34, No. 9, pp. 1249-1254 (2005). 2. 林光隆、宋振銘、黃家緯,“Sn-Zn系列無鉛銲錫合金與基材界面金屬間化合物生成之探討”,界面科學會誌,26卷8期,pp. 61-70 (2004)。 3. J. W. Yoon and S. B. Jung, “Reliability studies of Sn-9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407, pp. 141-149 (2006). 4. T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate”, Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003). 5. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder as replacement for Sn-Pb solder ”, Journal of Alloys and Compounds, Vol. 400, pp. 136-144 (2005). 6. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998). 7. D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate”, Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004). 8. S. W. Chen and Y. W. Yen, “Interfacial Reactions in Ag-Sn/Cu Couples”, Journal of Electronic Materials, Vol. 28(11), pp. 1203-1208 (1999). 9. W. K. Choi and H. M. Lee, “Effect of Soldering and Aging Time on Interfacial Microstructure and Growth of Intermetallic Compounds Between Sn-3.5Ag Solder Alloy and Cu Substrate”, Journal of Electronic Materials, Vol. 29(10), pp. 1207-1213 (2000). 10. W. T. Chen, C. E .Ho, and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, Journal of Materials Research, Vol. 17(2), pp. 263-266 (2002). 11. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, Journal of Applied Physics, Vol. 93(3), pp. 1335-1353 (2003). 12. K. N. Tu and K. Zeng, “Tin-lead(SnPb) solder reaction in flip chip technology”, Materials Science and Engineering, R34, pp. 1-58 (2001). 13. K. Z. Wang and C. M. Chen, “Intermetallic Compound Formation and Morphology Evolution in the 95Pb5Sn Flip-Chip Solder Joint with Ti/Cu/Ni Under Bump Metallization during Reflow Soldering”, Journal of Electronic Materials, Vol. 34(12), pp. 1543-1549 (2005). 14. 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立圖書,pp. 136 (2004)。 15. 鐘文仁、陳佑任,“IC封裝製程與CAE應用”,全華科技圖書,2004。 16. 陳志銘,“微電子構裝材料與技術”,化工技術,第十四卷, pp. 114-123,2006年9月號。 17. Binary alloy phase diagrams, ed. T.B. Massalski, (Materials Park, OH: ASM Intl., 1990). 18. 黃嘉緯、林光隆,“電子構裝無鉛銲錫的發展現況”,銲接與切割,13卷2期,92年六月。 19. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, R27, pp. 95-141 (2000). 20. 莊東漢、吳醒非、黃貴偉、顏秀芳 、林修任,“銲錫接點界面反應生成介金屬形態及其動力學”,界面科學會誌,26卷2期,pp. 71-82 (2004)。 21. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Applied Physics Letters, Vol. 63(1), pp. 15-17 (1993). 22. T. C. Chang, M. H. Hon, and M. C. Wang, “Adhesion Strength of the Sn-9Zn-xAg/Cu Interface”, Journal of Electronic Materials, Vol. 32(6), pp. 516-522 (2003). 23. Y. S. Kim, K. S. Kim, C. W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245 (2003). 24. T. C. Chang, M. C. Wang, and M. H. Hon, “Effect of aging on the growth of intermetallic compounds at the interface of Sn-9Zn-xAg/Cu substrates”, Journal of Crystal Growth, Vol. 250, pp. 236-243 (2003). 25. K. L. Lin, and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32(2), pp. 95-100 (2003). 26. S. C. Chang, S. C. Lin, and K. C. Hsieh, “The Foemation and Growth of Intermetallic Compounds in Sn-Zn and Sn-Zn-Al Solder with Ni/Au Surface Finish”, Journal of Electronic Materials, Vol. 35(3), pp. 399-405 (2006). 27. K. L. Lin, P. C. Liu, and J. M. Song, “Wetting Interaction between Pb-free Sn-Zn Series Solders and Cu,Ag Substrates”, IEEE Electronic Components and Technology Conference, pp. 1310-1313 (2004). 28. C. S. Lee and F. S. Shieu, “Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint”, Journal of Electronic Materials, Vol. 35(8), pp. 1660-1664 (2006). 29. M. McCORMACK, S. Jin, and H. S. Chen, “New Lead-Free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23(7), pp. 687-690 (1994). 30. C. Y. Chou, S. W. Chen, and Y. S. Chang, “Interfacial reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni couples”, Journal of Materials Research, Vol. 21(7), pp. 1849-1856 (2006). 31. C. W. Huang, and K. L. Lin, “Morphology of Intermetallic Compounds Formed between Lead-Free Sn-Zn Based Solders and Cu Substrates”, Journal of Electronic Materials, Vol. 35(12), pp. 2135-2141 (2006). 32. R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. Ariga, and L. B. Hussain, “Effect of sample perimeter and temperature on Sn-Zn based lead-free solders”, Materials Letters, Vol. 60, pp. 2383-2389 (2006). 33. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interface reaction Productions between Cu and various Solder Alloys by Thermodynsmic Calculation”, Acta Metallurgica, Vol. 45(5), pp. 1867-1874 (1997). 34. C. Y. Chou and S. W. Chen, “Phase equilibria of the Sn-Zn-Cu ternary system”, Acta Materialia, Vol. 54, pp. 2393-2400 (2006). 35. J. W. Yoon and S. B. Jung, “Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn-Zn solder”, Journal of Materials Research, Vol. 21(6), pp. 1590-1598 (2006). 36. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, “Heat resistance of Sn-9Zn solder/Cu interface with or without coating”, Journal of Materials Research, Vol. 15(4), pp. 884-891 (2000). 37. C. W. Huang and K. L. Lin, “Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging”, Journal of Materials Research, Vol. 19(12), pp. 3560-3568 (2004). 38. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test”, Scripta Materialia, Vol. 51, pp. 641-645 (2004). 39. M. Date and K. N Tu, “Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads”, Journal of Materials Research, Vol. 19(10), pp. 2887-2895 (2004). 40. H. M. Lee, S. W. Yoon, and B. J. Lee, “Thermodynamic Prediction of Interface Phase at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27(11), pp. 1161-1166 (1998). 41. S. C. Yang, C. E. Ho, C. W. Chang, and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu” Journal of Materials Research, Vol. 21(10), pp. 2436-2349 (2006). 42. H. Z. Huang, X. Q. Wei, L. Zhou, X. D. Liu, and G. L. Guo, “Effect of Zn Concentration on Wettability of Sn-Zn Alloy on Cu and on the Interfacial Microstructure between Sn-Zn Alloy and Cu”, Acta Metallurgica Sinica, Vol. 19(4), pp. 251-257 (2006). 43. C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao, “Volume Effect on the Soldering Reaction between SnAgCu Solders and Ni”, IEEE Proceedings of 10th International Symposium on Advanced Packaging Materials, pp. 39-44 (2005). 44. H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompoanied by ripening”, Physical Review B, Vol. 53(23), pp. 16027-16034 (1996). 45. H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu”, Applied Physics Letters, Vol. 66(18), pp. 2337-2339 (1995). 46. H. K. Kim and K. N. Tu, “Rate of consumption of Cu in soldering accompanied by ripening”, Applied Physics Letters, Vol. 67(14), pp. 2002-2004 (1995). 47. H. K. Kim and K. N. Tu, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers”, Applied Physics Letters, Vol. 68(16), pp. 2204-2206 (1996). 48. D. Ma, W. D. Wang, and S. K. Lahiri, “Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow”, Journal of Applied Physics, Vol. 91(5), pp. 3312-3317 (2002). 49. K. N. Tu, F. Ku, and T. Y. Lee, “Morphological Stability of Soldre Reaction Products in Flip-Chip Technology”, Journal of Electronic Materials, Vol. 30(9), pp. 1129-1132 (2001). 50. A. A. Liu, H. K. Kim, and K. N. Tu, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, Journal of Applied Physics, Vol. 80(5), pp. 2774-2780 (1996). 51. P. G. Kim, J. W. Jang, T. Y. Lee, and K. N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils”, Journal of Applied Physics, Vol. 86(12), pp. 6746-6751 (1999). 52. J. S. Kirkaldy and D. J. Young, “Diffusion in the condensed state”, The Institute of Metals, London, (1987). 53. H. L. Reynolds and J. W. Morris, “The Role of Cu-Sn Intermetallics in Wettability Degradation”, Journal of Electronic Materials, Vol. 24(10), pp. 1429-1434 (2001). 54. A. J. Sunwoo, J. W. Morris, and G. K. Lucey, “The Growth of Cu-Sn Intermetallics at a Pretinned Copper-Solder Interface”, Metallurgical Transactions A, Vol. 23A, pp. 1992-1323 (1991). 55. Technical Reports for the Lead Free Solder Project: Alloy Descriptions: “Lead-Free Solder Alloy Designation and Composition”, Lead-Free Solder Project CD-ROM, National Center for Manufacturing Sciences(NCMS), 1998. 56. 鄭壽昌、林光隆,錫-鋅-銀-鋁無鉛銲錫的機械性質、潤濕及時效性之研究,國立成功大學材料工程學系博士論文,2004年7月。 57. J. W. Jang, L. N. Ramanathan, J. K. Lin, and D. R. Frear, “Spalling of Cu3Sn Intermetallics in High-Lead 95Pb5Sn Solder Bumps on Cu Under Bump Metallization During Solid-State Annealing”, Journal of Applied Physics, Vol. 95(12), pp. 8286-8289 (2004). 58. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, “Effect of Limited Cu Supply on Soldering Reactions Between SnAgCu and Ni”, Journal of Electronic Materials, Vol. 35(5), pp. 1017-1024 (2001). 59. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Rection in Bimetallic Copper-Tin Thin Films”, Acta Materialia, Vol. 30, pp. 947-952 (1982).
摘要: SnPb銲料已廣泛使用在微電子構裝中作為金屬的連接材料,由於具有低成本、低熔點溫度、且對於基材有極佳的潤濕性。然而,在電子產品中錫鉛銲錫,因為鉛具有毒性會對人體健康與環境造成威脅,因此,尋找替代鉛的無鉛銲錫(lead-free solder)是勢在必行的。在眾多的合金之中,基於熔點的考量,共晶Sn-9Zn銲料應是另一較佳的選擇,其熔點溫度198℃接近傳統的Sn-Pb銲料(183℃),加上取得成本較低,使得Sn-Zn銲料在無鉛銲料的選擇上更具有其優勢。 在電子構裝中銲料和金屬化層間之界面反應已成為一重要之議題,因為此研究可提供有效之資訊於銲料接點可靠度的分析。不過大部分所研究的Cu基材都是塊材(bulk)的尺寸,而在先進之構裝銲點中如覆晶(flip-chip)中之凸塊下金屬 (under bump metallization,UBM),Cu金屬化層大多為薄膜(thin film)的形式,由於bulk與thin film所能供給參與反應的Cu來源有極大的差異,因此預期thin film Cu之介金屬化合物之成長動力學與bulk Cu將有所差異,故本研究之目的在探討thin film和bulk Cu之差異。 本研究使用之塊材Cu厚度為0.5 mm,而薄膜Cu基材的厚度分別為4000 Å、3 μm、6 μm與10 μm。實驗結果發現在此五種不同厚度之Cu基材會導致主要反應產物的差異,以及產物形態之不同。在塊材、6 μm與10 μm薄膜Cu基材的形式中,於回銲和固態熱處理期間,Cu5Zn8介金屬化合物(IMC)是主要之反應產物。回銲期間可觀察到Cu5Zn8 IMC之結構大致上維持不變。但是,在固態熱處理期後,bulk Cu之Cu5Zn8 IMC會破裂並在Cu5Zn8/Cu界面處生成Cu6Sn5和Cu3Sn兩相。而在薄膜4000 Å與3 μm Cu基材之回銲下可觀察到CuZn5之熟化反應,CuZn5 IMC會產生形態之改變,隨著時間之增加,CuZn5會由層狀慢慢轉變成為扇貝狀之形態。在固態熱處理後,經由界面微結構即時觀察發現,在bulk Cu基材中接近界面處會發生銲料之變形,然而,在薄膜4000 Å Cu基材中,CuZn5晶粒會遭受擠壓而突起至界面處。
SnPb olders have been used as the principal joining materials in electronic packaging due to many well-known advantages, like low cost, good wettability, and proper melting point. However, the usage of Pb in electronic products has a serious concern because the toxicity of Pb may cause detrimental effects on environment and human health. Therefore, searching for a proper candidate to replace SnPb solders is currently an urgent issue in electronic industry. Various Pb-free solders have been proposed, where eutectic SnZn alloy (Sn-9 wt% Zn) is one of the most potential candidates because of its lower cost and a melting point (198.5 ℃) that is closer to that of the conventional eutectic SnPb alloy (183 ℃). Interfacial reactions between solders and metallic substrates have been an important subject in electronic packaging, However, the Cu substrate is usually in the form of thin film in advanced electronic packaging, such as in the under-bump-metallization(UBM) of a flip-chip joint . The major difference between bulk and thin-film substrates is that the availability of the component that is involved in the interfacial reaction is limited for the thin-film substrate but is almost infinite for the bulk one. In this present study, two types of Cu substrates were used. Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates are investigated and compared. The thicknesses of bulk and thin-film Cu substrates are 0.5 mm and 4000 Å、3 μm、6 μm、10 μm, respectively. Different dominant reaction products and interfacial microstructures are observed in these two types of interfacial reactions. In the bulk Cu、3 μm and 6 μm type, the Cu5Zn8 phase is the dominant reaction product under reflow and solid-state annealing. However, the CuZn5 phase becomes the dominant reaction product in the 4000 Å and 3 μm thin-film Cu type. The Cu5Zn8 phase in the bulk Cu type remains uniform microstructure after reflow. But after solid-state annealing, the Cu5Zn8 phase in the bulk Cu type fractures and the Cu6Sn5 and Cu3Sn phases are formed at the Cu5Zn8/Cu interface. The CuZn5 phase in the thin-film Cu type ripens after reflow and the phase morphology is transformed from uniform layer into separated scallops. In-situ observation of the interfacial microstructure after solid-state annealing reveals that prominent deformation occurs in the solder region close to the interface in the bulk Cu type.While in the 4000 Å thin-film Cu type, the CuZn5 grain is extruded out of the interface.
URI: http://hdl.handle.net/11455/3626
其他識別: U0005-1107200721003300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107200721003300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.