Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36260
標題: 竹嵌紋病毒於類甲基轉移酶 (NbMTs1) 大量表現或靜默之菸草轉殖株內的複製能力
BaMV Replication in NbMTs1-overexpressed or NbMTs1-silenced Transgenic Nicotiana benthamiana
作者: 黃士韋
Huang, Shih-Wei
關鍵字: BaMV
甲基轉移酶
NbMTs1
出版社: 生物科技學研究所
引用: 參考文獻 一、中文參考文獻 林納生、陳脈紀、江濤與林維治。1979。台灣竹類嵌紋病之初步研究。 台灣省林業試驗所試驗報告 第317號。 李宜佳。2002。竹嵌紋病毒複製酵素之功能特性分析。國立中興大學農業生物科技學研究所博士論文。 莊棨貿。2008。菸草中一個疑似甲基轉移酶對竹嵌紋病毒複製之影響。國立中興大學農業生物科技學研究所碩士論文。 卓育秀。2008。建立基因靜默抑制子HC-Pro基因轉殖植物及分析HC-Pro對應用竹嵌紋病毒載體表現外來基因之影響。國立中興大學農業生物科技學研究所碩士論文。 林彥良。2006。紅檜Caffeoyl-CoA 3-O-methyltransferase基因之選殖及其轉基因菸草木質素分析。國立台灣大學森林環境暨資源學系說是論文 葉錫東、陳林築、楊長賢、曾志正、詹富智。2004。植物基因轉殖之原理與應用。 二、 西方參考文獻 Ahlquist, P., Noueiry, A.O., Lee, W.M., Kushner, D.B., and Dye, B.T. (2003). Host factors in positive-strand RNA virus genome replication. J Virol 77, 8181-8186. Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Res 16, 9909-9916. Armengaud, J., Urbonavicius, J., Fernandez, B., Chaussinand, G., Bujnicki, J.M., and Grosjean, H. (2004). N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. J Biol Chem 279, 37142-37152. Azhakanandam, K., Weissinger, S.M., Nicholson, J.S., Qu, R., and Weissinger, A.K. (2007). Amplicon-plus targeting technology (APTT) for rapid production of a highly unstable vaccine protein in tobacco plants. Plant Mol Biol 63, 393-404. Beck, D.L., Guilford, P.J., Voot, D.M., Andersen, M.T., and Forster, R.L. (1991). Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183, 695-702. Burlat, V., Kwon, M., Davin, L.B., and Lewis, N.G. (2001). Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57, 883-897. Cheng, C.W., Hsiao, Y.Y., Wu, H.C., Chuang, C.M., Chen, J.S., Tsai, C.H., Hsu, Y.H., Wu, Y.C., Lee, C.C., and Meng, M. (2009). Suppression of bamboo mosaic virus accumulation by a putative methyltransferase in Nicotiana benthamiana. J Virol 83, 5796-5805. Collendavelloo, J., Legrand, M., and Fritig, B. (1983). Plant Disease and the Regulation of Enzymes Involved in Lignification: Increased Rate of De Novo Synthesis of the Three Tobacco O-Methyltransferases during the Hypersensitive Response to Infection by Tobacco Mosaic Virus. Plant Physiol 73, 550-554. Dignan, M. (2008). Viewpoint: a conversation with Mark Dignan, by M Christine Nagy, and Jeffrey S Hallam. Am J Health Behav 32, 339-346. Ero, R., Peil, L., Liiv, A., and Remme, J. (2008). Identification of pseudouridine methyltransferase in Escherichia coli. RNA 14, 2223-2233. Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., and Blinov, V.M. (1989). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17, 4713-4730. Hodgman, T.C. (1988). A new superfamily of replicative proteins. Nature 333, 22-23. Horsch, R.B., Rogers, S.G., and Fraley, R.T. (1985). Transgenic plants. Cold Spring Harb Symp Quant Biol 50, 433-437. Humphreys, J.M., and Chapple, C. (2002). Rewriting the lignin roadmap. Curr Opin Plant Biol 5, 224-229. Kachroo, P., Chandra-Shekara, A.C., and Klessig, D.F. (2006). Plant signal transduction and defense against viral pathogens. Adv Virus Res 66, 161-191. Kadare, G., and Haenni, A.L. (1997). Virus-encoded RNA helicases. J Virol 71, 2583-2590. Kagan, R.M., and Clarke, S. (1994). Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310, 417-427. Katz, J.E., Dlakic, M., and Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2, 525-540. Kellmann, J.W. (2001). Identification of plant virus movement-host protein interactions. Z Naturforsch C 56, 669-679. Kim, M.J., Huh, S.U., Ham, B.K., and Paek, K.H. (2008). A novel methyltransferase methylates Cucumber mosaic virus 1a protein and promotes systemic spread. J Virol 82, 4823-4833. Kim, M.J., Huh, S.U., Ham, B.K., and Paek, K.H. (2008). A novel methyltransferase methylates Cucumber mosaic virus 1a protein and promotes systemic spread. J Virol 82, 4823-4833. Koonin, E.V. (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72 ( Pt 9), 2197-2206. Li, Y.I., Chen, Y.J., Hsu, Y.H., and Meng, M. (2001). Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J Virol 75, 782-788. Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., and Meng, M. (1998). Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. J Virol 72, 10093-10099. Lin, M.T., Kitajima, E.W., and Costa., C.L. (1977). Partial purification and some properties of bamboo mosaic virus. Phytopathology 67, 1439-1443. Lin, N.S., and Hsu, Y.H. (1994). A satellite RNA associated with bamboo mosaic potexvirus. Virology 202, 707-714. Lin, N.S., Lin., F.Z., Huang., T.Y., and Hsu., Y.H. (1992). Genome properties of bamboo mosaic virus. Phytopathology 82, 731-734. Murashinge, T., and Shoog, F. (1962). A revised mmedium for rapid growth and bioassays with tobacco tissue. PhsiolPlant 15, 473-439. Nagy, P.D., and Pogany, J. (2008). Multiple roles of viral replication proteins in plant RNA virus replication. Methods Mol Biol 451, 55-68. Quan, S., Nelson, R.S., and Deom, C.M. (2008). The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea. Arch Virol 153, 1505-1516. Rozanov, M.N., Koonin, E.V., and Gorbalenya, A.E. (1992). Conservation of the putative methyltransferase domain: a hallmark of the ''Sindbis-like'' supergroup of positive-strand RNA viruses. J Gen Virol 73 ( Pt 8), 2129-2134. Scholthof, H.B. (2005). Plant virus transport: motions of functional equivalence. Trends Plant Sci 10, 376-382. Thivierge, K., Nicaise, V., Dufresne, P.J., Cotton, S., Laliberte, J.F., Le Gall, O., and Fortin, M.G. (2005). Plant virus RNAs. Coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant Physiol 138, 1822-1827. Tsikas, D., Schubert, B., Gutzki, F.M., Sandmann, J., and Frolich, J.C. (2003). Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J Chromatogr B Analyt Technol Biomed Life Sci 798, 87-99. van der Heijden, M.W., and Bol, J.F. (2002). Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins. Arch Virol 147, 875-898. Whitham, S.A., Yang, C., and Goodin, M.M. (2006). Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 19, 1207-1215. Yang, C.C., Liu., J.S., Lin., C.P., and Lin., N.S. (1997). Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo.(Bambusa vulgaris McClure). 38, 77-84.
摘要: 竹嵌紋病毒(Bamboo mosaic virus)為正股RNA病毒,基因體含有五個轉譯區(ORFs)。第一個轉譯區可轉譯出大小約155kDa的複製酵素,從N端到C端分別為戴帽酵素活性區 (CAP domain) ,類解旋酵素活性區 (HLD domain),以及核糖核酸聚合酵素活性區 (RdRp domain)。本實驗室先前已利用酵母菌雙雜交系統,以RdRp為釣餌蛋白於菸草葉片所建構的cDNA基因庫中,篩選得到一類甲基轉移酶 (NbMTs1),經先前實驗證實可抑制竹嵌紋病毒之複製,但是對於其他植物病毒能否產生影響目前尚不清楚。因此本實驗擬建構大量表現及基因靜默之NbMTs1轉殖菸草,以pEpyon質體為載體,pEpyon質體上有35S 啟動子能大量轉錄接入序列,建構pEpyon-MTs,帶有正股NbMTs1基因片段以大量表達NbMTs1蛋白質,pEpyon-MTs-rev則接入負股NbMTs1基因片段以達到基因靜默作用,以農桿菌系統 (Agrobacterium tumefaciens LBA4404) 轉殖方式建立基因轉殖菸草,已分別獲得約60株pEpyon-MTs植株及20株pEpyon-MTs-rev植株,以PCR方式確定這些轉殖植株含有轉殖基因片段,再以RT-PCR實驗,已獲得8株pEpyon-MTs植株能大量表現NbMTs mRNA及6株pEpyon-MTs-rev植株能靜默NbMTs mRNA 表現量。大量栽種轉殖植株,接種不同的植物病毒,分析及探討菸草抵抗植物病毒感染能力和NbMTs1表達量是否具有相關關係。
Bamboo mosaic virus has a single-strand RNA genome which consists of five open reading frames (ORFs). ORF1 encodes a ~155 kDa replicase that contains a capping enzyme domain, a helicase-like domain, and a RNA-dependent RNA polymerase domain (RdRp). In previous study, a putative Nicotiana benthamiana methyltransferase (NbMTs1) was found to interact with RdRp in a yeast two-hybrid system screening against a leaf cDNA library of N. benthamiana. The NbMTs1 can inhibit the replication of virus, and it may be the part of defense mechanism in plants. However, the effects of the NbMTs1 overexpression or NbMTs1 gene silence on other plant virus replication are not clear yet. In this study, we generated N. benthamiana lines overexpressing NbMTs1 and gene silencing transgenic plants, respectively. We constructed pEpyon-MTs by inserting NbMTs1 fragment into pEpyon plasmid to overexpress NbMTs1, and constructed pEpyon-MTs-rev by inserting antisense NbMTs1 fragment into pEpyon plasmid to silence the NbMTs1 expression in the transgenic plants. The recombinant plasmids were transformed into N. benthamiana via Agrobacterium LBA4404-mediated transformation. The transgenic plant lines were first selected by Kanamycin resistance phenotype, and further confirmed by genomic PCR analysis. The quantity of NbMTs1 mRNA in transgenic plants was detected by RT-PCR. We had obtained 8 pEpyon-MTs and 6 pEpyon-MTs-rev transgenic plant lines. We will inoculate transgenic N. benthamiana with several different plant virus and analyze the effect of NbMTs1 expression on plant virus replication in transgenic plants.
URI: http://hdl.handle.net/11455/36260
其他識別: U0005-2208201005221800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201005221800
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.