Please use this identifier to cite or link to this item:
標題: 大氣電漿改質聚胺酯表面應用於人工小血管材料之研究
The application of air plasma treatment on polyurethane cardiovascular biomaterials
作者: 林宏道
Lin, Hung-Dau
關鍵字: plasma treatment
出版社: 化學工程學系所
引用: 1. Szycher M ,Griffin JC, and Williams JL, (1987). Blood compatible polyurethane elastomers, J. Biomed. Applications, 2, 290- 313. 2. Lelah MD , and Cooper SL, (1986). Polyurethanes in Medicine, CRC Press, Boca Raton, FL, USA. 3. Cooper SL, and Tobolsky AV, (1966). J. Applied Polymer Science, 10, 1837. 4. Mrinal K, and Stephrn M ,(1996). Applied Polymer Science, 61, 1939-1948. 5. Lyman DJ, Seare WJ , Albo D ,Bergman S ,Lamb J ,Metcalf LC ,and Richards ,(1977). Polyurethane elastomers in surgery, Int J Polym Mater, 5, 72. 6. Mirkovitch V, Akutsu T, and Kolff WJ, (1962). Polyurethane aortas in dogs. Three year results, Teans Am Soc Artif Intern Organs, 8, 79. 7. Matsumoto PJH, Fazekos G, and Gage AA, (1964). Arterial replacement by autogenous connective tissue tubes formed in polyurethane sponge, Surg Forum, 15, 72. 8. Dreyer B, Akutsu T, and kolff WJ, (1960). Aortic grafts of polyurethane in dogs, J Appl Physiol, 15, 18. 9. Bernatz PE, (1965). Arterial replacement, Mayo Clin Proc, 40, 853. 10. Marinescu V, Ionescu M, Ionescu L, Carnaru S, Pausescu S, Radulescu A, and Racota M, (1964). Proteze valculare din poliuretan, Probl Chir Orthoped, 1, 17. 11. Lambda NM, Woodhouse KA and Cooper SL, (1998). Polyurethanes in Biomedical Application, CRC Press. 12. Hallab NJ, Bundy KJ, O’Connor K, Moses RL and Jacobs JJ, (2001). Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion, Tissue Eng, 1, 55-71. 13. Hallab NJ, Bundy KJ, O''Connor K, Clark R, and Moses RL, (1995). Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. J Long Term Eff Med Implants, 5(3), 209-31 14. Thomas KA and Cook SD, (1985). An Evaluation of Valuables Influencing Implant Fixation by Direct Bone Apposition, J Biomed Mater Res, 19, 875-904. 15. Higuchi A, Tamiya S, Tsubomura T, Katoh A, Cho CS, Akaike T and Hara M, (2000). Growth of L929 Cells on Polymeric Films Prepared by Langmuir-Blodgett and Casting Methods, J Biomater Sci Polym Ed, 2, 149-168. 16. Miller DC, Thapa A, Haberstroh KM, and Webster TJ, (2005). Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features, Biomaterials, 25(1), 53-61. 17. Chu PK, Chen JY, Wang LP, Huang N. (2002). Plasma-Surface Modification Material Science and Engineering. 143-206. 18. Loh IH, Plasma Surface Modification in Biomedical Applications AST Technical Journal. 19. Hollahan JR, Stafford BB, Falb RD, Payne ST, (1969). Attachment of amino group to polymers surfaces by radiofrequency plasmas. J Appl Polym Sci ,13,807-16. 20. Inagaki N, Tasaka S, Miyazaki H, (1989). Sulfonic acid group -containing thin films prepared by plasma polymerization. J Appl Polym Sci; 38, 1829-38. 21. Hollahan JR, Techniques and Applications of Plasma Chemistry. Wiley, 1974 (New York). 22. Yang MR, Chen KS, (1997). Wettability and lubrication of poly-terafluoroethylene (PTFE) by UV-induced graft copolymerization on plasma-treated surface. J Materials Chem And Physics, 50, 11-14. 23. Robert WB, Peter MH, and Murray TH, (1980). “Thin Film Technology”, Van Nostrand Reinhold, P.201. 24. Yasuda H, Yamanashi BS, and Devito DP, (1978). The rate of adhesion of melanoma cells onto nonionic polymer surfaces. J Biomed Mater Res 12, 701. 25. Sioshansi P, and Tobin EJ, (1996). Surf. Coating Technol. 83, 175. 26. Lee SD, Hsiue GH, Chang PC, and Kao CY, (1996). Biomaterials , 17, 1599 27. Baquey C, Palumbo F, Porte-Durrieu MC, Legeay G, Tressand A, d''Agostino R, and Nuel, (1999) . Instrum Meth Phys Res B, 151, 255 28. Chang FY, Shen M , and Bell AT, (1973). J Appl Polym Sci, 17, 2915 29. Meenaghan MA, Natiella JR, Moresi JR, Flynn HE, Wirth JE, and Baier RE (1979). J Biomed Mater Res 13, 631. 30. Carter JM, Flynn HE, Meenaghan MA, Natiella JR, Akers CK, and Baier RE , (1981). J Biomed Mater Res, 15, 843. 31. 吳耀廷、黃曉鳳、溫俊祥,(2004)。電漿表面處理在生醫材料上之應用,工業材料雜誌,212期。 32. Loh IH, "Plasma Surface Modification in Biomedical Applications", AST Technical Journal. 33. Chu PK, Chen YK, Wang LP, Huang N, (2002). "Plasma-Surface Modification Biomaterials", Material Science and Engineering R36, 143~206. 34. Ratner BD, Chilkoti A and Lopez GP, (1990). "Plasma Deposition and Treatment for Biomedical Applications," in Plasma Deposition, Treatment and Etching of Polymers, edited by R. d''Agostino, Academic Press, San Diego, CA, p.463-516. 35. Dekker A, Reitsma K, Beugeling T, Bantjes A, Feijien J, and van Aken WG , (1991). Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials , 12, 130. 36. 陳克紹、陳素真,(2005)。塑膠資訊 i-Plastics,03期。 37. 方珮珊,CF4/C2H2電漿沉積非對稱聚碸滲透蒸發膜之研究,中原大學化學工程學系。 38. Sheu MS, Biomaterials surface modification using plasma gas discharge processes, in D L Wise ED, (1995). Encyclopedic Handbook of Biomaterials & Bioengineering, 865-887, Marcel Dekker, Inc., New York. 39. Wan YQ, Lu X, Zhu J, Wan C, Yang L, Bei J, Wang J, (2004). Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment, Biomaterials, 25,4777-83. 40. Tatoulian, Bouloussa M, Moriere O,(2004). Arefi-Khonsari F, Amouroux F, Rondelez J, Plasma surface modification of organic materials: comparison between polyethylene films and octadecyltrichloro -silane self-assembled monolayer, Langmuir, 20, 24, 10481-9. 41. Wan YQ, Yang J, Yang JL, Bei JZ, Wang SG., (2003). Cell adhesion on gaseous plasma modified poly (L-lactide) surface under shear stress field. Biomaterials, 24,3757-64. 42. Yang J, Shi GX, Bei JZ, Wang SG, Cao YL, Shang QX, Yang GH, Wang WJ.(2002). Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid )(70/30) cell scaffold for human skin fibroblast cell culture. J Biomed Mater Res, 62,438-46. 43. 錢瑞龍,利用醋酸電漿處理聚乳酸-聚甘醇酸及不織布增進材料表面之細胞貼附性,大同大學,材料工程研究所碩士論文,94年。 44. Michelle LS, Alistair CJ, Ellen R and Fisher,(2002). Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. J. Membr. Sci. 204,341. 45. Hsu SH, and Chen WC, (2000). Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface., Biomaterials, 21,359-367. 46. Herring M, Gardner A, and Glover JA,(1978). A single-staged technique for seeding vascular grafts with autogenous endothelium., Surgery, 84, 498-504. 47. Nichols NK, Gospodarwicz D, Kessler TR and Oslen DB,(1981). Increased adherence of vascular endothelial cells to Biomer precoated with extracellular matrix., Trans. Am. Sec. Artif. Intern.Organs, 27, 208-211. 48. Grzesiak JJ, Pierschbacher MD, Amodeo MF, Malaney TI, Glass JR, (1997). Enhancement of cell interactions with collagen/glycosaminoglycan matrices by RGD derivatization. Biomaterial,18(24), 1625-32. 49. Kulkarni GV, Chen B, Malone JP, Narayanan AS, and George A, (2000). 81 Promotion of selective cell attachment by the RGD sequence indentine matrix protein 1, Archives of Oral Biology, 45, 475-484. 50. Reinikainen T, Teleman O and Teeri TT (1995). Proteins, 22, 392-403. 51. Kouvroukoglou S, Dee KC, Bizios R, McIntire LV and Zygourakis K (2000). Biomaterials; 21, 1725-33. 52. Holland J, Hersh L, Bryhan M, Onyiriuka E, Ziegler L, (1996). Biomaterials;17, 2147-56. 53. Chuang WY, Young TH, Yao CH, and Chiu WY, (1999). Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro., Biomaterials, 20, 1479-1487. 54. Moncada S, Herman AG., Higgs EA, and Vane JR (1977). Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11, 323-44. 55. Furchgott RF, and Zawadzki JV (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-6. 56. Palmer RM., Ashton DS, and Moncada S, (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-6. 57. Vane JR, Anggard EE, and Botting RM, (1990). Regulatory functions of the vascular endothelium. N Engl J Med 323, 27-36. 58. Cooke JP, (2003). Flow, NO, and atherogenesis. Proc Natl Acad Sci U S A 100, 768-70. 59. Asakura T, and Karino T, (1990). Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66, 1045-66. 60. Malek AM, Alper SL, and Izumo S, (1999). Hemodynamic shear stress and its role in atherosclerosis. Jama 282, 2035-42. 61. Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, Chien S, and Shyy JY, (1998). Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 18, 227-34. 62. Feldman CL, and Stone PH, (2000). Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr Opin Cardiol 15, 430-40. 63. Arnal JF, Dinh-Xuan AT, Pueyo M, Darblade B, and Rami J, (1999). Endothelium-derived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 55, 1078-87. 64. Moncada S, Gryglewski R, Bunting S, and Vane JR, (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263, 663-5. 65. Laliberte F, Laliberte MF, Alhenc-Gelas F, and Chevillard C, (1987). Cellular and subcellular immunohistochemical localization of angiotensin-converting enzyme in the rat adrenal gland. Lab Invest 56, 364-71. 66. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, and Masaki T, (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411-5. 67. Kedzierski RM, and Yanagisawa M, (2001). Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41, 851-76. 68. Pearson JD, Carleton JS, and Gordon JL, (1980). Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J 190, 421-9. 69. Sadler JE, (1997). Thrombomodulin structure and function. Thromb Haemost 78, 392-5. 70. Stern DM, Esposito C, Gerlach H, Gerlach M, Ryan J, Handley D, and Nawroth P, (1991). Endothelium and regulation of coagulation. Diabetes Care 14, 160-6. 71. Esmon CT, (2000). The endothelial cell protein C receptor. Thromb Haemost 83, 639-43. 72. Jaffe EA, (1987). Cell biology of endothelial cells. Hum Pathol 18, 234-9. 73. Emeis JJ, and Kooistra T, (1986). Interleukin 1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 163, 1260-6. 74. Cerveny TJ, Fass DN, and Mann KG, (1984). Synthesis of coagulation factor V by cultured aortic endothelium. Blood 63, 1467-74. 75. Davie EW, Fujikawa K, and Kisiel W, (1991). The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363-70. 76. Chen J, Bierhaus A, Schiekofer S, Andrassy M, Chen B, Stern DM, and Nawroth PP, (2001). Tissue factor--a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost 86, 334-45. 77. van Mourik JA, Romani de Wit T, and Voorberg J, (2002). Biogenesis and exocytosis of Weibel-Palade bodies. Histochem Cell Biol 117, 113-22. 78. Povlishock JT, and Rosenblum WI, (1987). Injury of brain microvessels with a helium-neon laser and Evans blue can elicit local platelet aggregation without endothelial denudation. Arch Pathol Lab Med 111, 415-21. 79. Turner RR, Beckstead JH, Warnke RA, and Wood GS, (1987). Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am J Clin Pathol 87, 569-75. 80. Cuschieri J, Gourlay D, Bulger E, Garcia I, Jelacic S, and Maier RV, (2002). Platelet-activating factor priming of inflammatory cell activity requires cellular adherence. Surgery 132, 157-66. 81. Vane JR, and Botting RM, (1994). Mediators from the endothelial cell and their participation in inflammation. Int J Tissue React 16, 19-49. 82. Madri JA, and Williams SK, (1983). Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97, 153-65. 83. Rundhaug JE, (2005). Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9, 267-85. 84. Streuli C, (1999). Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11, 634-40. 85. Brooks PC, (1996). Role of integrins in angiogenesis. Eur J Cancer 32A, 2423-9. 86. Kalluri R, (2003). Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3, 422-33. 87. Brooks PC, Clark RA, and Cheresh DA, (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569-71. 88. Asahara T, Murohara T, Sullivan A, Silver M., van der Zee R, Li T, Witzenbichler B, Schatteman G., and Isner JM, (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-7. 89. Eichmann A, Corbel C, Nataf V, Vaigot P, Breant C, and Le Douarin NM, (1997). Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci U S A 94, 5141-6. 90. 陳韻如,開發CBD-RGD融合蛋白質應用於固定化細胞培養,中興大學,獸醫學研究所碩士論文,85年。 91. Griess P, (1879). Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt "Ueber einige azoverbindungen". Chem Ber 12, 426-428. 92. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, and Gupta A, (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan, J Pharm Biomed Anal, 32(6):1149-58. 93. Lampin M, Warocquier-Clerout R, Legris C, Degrange M, and Sigot-Luizard MF,(1997). Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res,36, 99-108. 94. Pierschbacher MD and Ruoslahti E,(1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, 309, 30-33. 95. Chuang WY, Young TH, Yao CH, and Chiu WY,(1999). Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro, Biomaterials, 20, 1479-1487. 96. Elcin YM, Dixit V, Lewin K, and Gitnick G,(1999). Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach, Artificial Organs, 23(2), 146-152. 97. Lin YS, Wang SS, Chung TW, Wang YH, Chiou SH, Hsu JJ, Chou NK, Hsieh KH, and Chu SH ,(2001). Growth of endothelia cells on dofferent concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane, Artificial Organs, 25(8) ,617-621. 98. Anselme K,(2000). Osteoblast adhesion on biomaterials, Biomaterials, 21, 667-681. 99. Mann BK, Tsai AT, Scott-Burden T, and West JL,(1999). Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition, Biomaterials, 20, 2281-2286. 100. Hsu SH, Chu WP, Lin YS, Chiang YL, Chen DC, and Tsai CL, (2004). The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion, J Biotechnol, 111(2), 143-54. 101. Khang G, Jeon JH, Lee JW, Cho SC, and Lee HB,(1999). Cell and platelet adhesions on plasma glow discharge-treated poly(lactide-co-glycolide), Biomed Mater Eng, 7(6), 357-68.
摘要: 本研究分兩部份探討,第一部分為使用大氣電漿對聚胺酯(polyurethane, PU) 表面進行改質,並觀察對牛頸動脈內皮細胞 (bovine carotid artery endothelial cells; BAECs) 生長及貼附的影響,應用於人工小血管之探討。經大氣電漿處理的樣品分為兩類,第一類為單純以大氣電漿處理,第二類為經大氣電漿處理再接枝CBD-RGD。實驗結果發現聚胺酯表面經大氣電漿處理後,表面粗糙度從0.466 nm增加為12.73 nm,且接觸角從95.3度下降為36.0度,這些改變使得牛頸動脈內皮細胞貼附及生長較未電漿改質者佳。利用接觸角測量、原子力顯微鏡與化學分析電子光譜儀結果分析,可證明CBD-RGD已接枝於聚胺酯表面。而細胞測試結果亦顯示,表面接枝CBD-RGD之基材,其細胞貼附與生長均較未改質者為佳。在血液相容性測試結果,接枝CBD-RGD能抗凝血,也降低發炎反應。另一部份為電漿接枝不同分子量的幾丁聚醣,並探討接枝幾丁聚醣分子量大小對血小板活化的影響,由實驗發現,將幾丁聚醣利用酸降解法降解七天後,接枝於聚胺酯表面,能抗凝血,也能降低發炎反應,在細胞相容性部分,也比接枝未降解之幾丁聚醣佳。
This study includes two different modifications of polyurethane (PU). In the first part, PU films were modified by air plasma, and an RGD-containing peptide, CBD-RGD, to enhance the attachment and adhesion of bovine carotid artery endothelial cells (BAECs). Such modification was expected to change the surface properties and improve the cell adhesion of PU substrate. Two procedures were used : (1) PU treated by air plasma only; and (2) PU treated by air plasma and grafted with CBD-RGD afterwards. The untreated PU film was smooth (RMS = 0.466 nm) and highly hydrophobic (contact angle θ = 95.6 o). Air plasma treatment resulted in oxidation of the surface, a slight increase in roughness (RMS = 12.73 nm) and a significant drop in hydrophilicity (contact angle θ = 36.0 o). These changes resulted in enhanced BAEC growth on polyurethane compared to the untreated sample. The CBD-RGD grafted surface also showed better cellular affinity in the cell culture test. In the second part, PU was grafted with chitosan of different molecular weights and the effect on platelet activation was investigated. It was found that the PU grafted with smaller chitosan reduced platelet activation and monocyte inflammation. The cell periferation was also better than that on the PU graft with larger chitosan.
其他識別: U0005-1207200714171200
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.