Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36314
DC FieldValueLanguage
dc.contributor王國祥zh_TW
dc.contributorCo-Shine Wangen_US
dc.contributor楊長賢zh_TW
dc.contributor陳良築zh_TW
dc.contributor鍾美珠zh_TW
dc.contributor趙光裕zh_TW
dc.contributorChang-Hsien Yangen_US
dc.contributorLiang-Jwu Chenen_US
dc.contributorMei-Chu Chungen_US
dc.contributorGuang-Yuh Jauhen_US
dc.contributor.advisor呂維茗zh_TW
dc.contributor.advisorWei-Ming Leuen_US
dc.contributor.author汪承偉zh_TW
dc.contributor.authorWang, Cheng-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T07:54:34Z-
dc.date.available2014-06-06T07:54:34Z-
dc.identifierU0005-2907201112394100zh_TW
dc.identifier.citationChapter 1 Abbasi, F., Onodera, H., Toki, S., Tanaka, H. and Komatsu, S. (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55: 541-552. Anil, V.S., Harmon, A.C. and Rao, K.S. (2003) Temporal association of Ca(2+)-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance. Plant Cell Physiol 44: 367-376. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., et al. (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14: 619-628. Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Komatsu, S. (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46: 356-366. Barak, O., Lazzaro, M.A., Lane, W.S., Speicher, D.W., Picketts, D.J. and Shiekhattar, R. (2003) Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J 22: 6089-6100. Barker, L.D.P., Templeton, M.D. and Ferguson, I.B. (1998) A 67-kDa plasma-membrane-bound Ca2+-stimulated protein kinase active in sink tissue of higher plants. Planta 205: 197-204. Bauer, A., Chauvet, S., Huber, O., Usseglio, F., Rothbacher, U., Aragnol, D., et al. (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19: 6121-6130. Becker, J.D., Boavida, L.C., Carneiro, J., Haury, M. and Feijo, J.A. (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713-725. Brewbaker, J.L. and Kwack, B.H. (1963) The Essential Role of Calcium Ion in Pollen Germination and Pollen Tube Growth. American Journal of Botany 50: 859-865. Chehab, E.W., Patharkar, O.R. and Cushman, J.C. (2007) Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum. Planta 225: 783-799. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497-3500. Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., et al. (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750-1761. Choi, J., Heo, K. and An, W. (2009) Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 37: 5993-6007. Coin, F., Auriol, J., Tapias, A., Clivio, P., Vermeulen, W. and Egly, J.M. (2004) Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J 23: 4835-4846. Estruch, J.J., Kadwell, S., Merlin, E. and Crossland, L. (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci U S A 91: 8837-8841. Freymark, G., Diehl, T., Miklis, M., Romeis, T. and Panstruga, R. (2007) Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol Plant Microbe Interact 20: 1213-1221. Gallant, P. (2007) Control of transcription by Pontin and Reptin. Trends Cell Biol 17: 187-192. Gargantini, P.R., Giammaria, V., Grandellis, C., Feingold, S.E., Maldonado, S. and Ulloa, R.M. (2009) Genomic and functional characterization of StCDPK1. Plant Mol Biol 70: 153-172. Ge, L.L., Tian, H.Q. and Russell, S.D. (2007) Calcium function and distribution during fertilization in angiosperms. American Journal of Botany 94: 1046-1060. Gribun, A., Cheung, K.L., Huen, J., Ortega, J. and Houry, W.A. (2008) Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 376: 1320-1333. Grigoletto, A., Lestienne, P. and Rosenbaum, J. (2010) The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta. Grigoletto, A., Lestienne, P. and Rosenbaum, J. (2011) The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 1815: 147-157. Gu, J., Xia, X., Yan, P., Liu, H., Podust, V.N., Reynolds, A.B., et al. (2004) Cell cycle-dependent regulation of a human DNA helicase that localizes in DNA damage foci. Mol Biol Cell 15: 3320-3332. Hanson, P.I. and Whiteheart, S.W. (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6: 519-529. Hardin, S.C., Winter, H. and Huber, S.C. (2004) Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol 134: 1427-1438. Harper, J.E., Breton, G. and Harmon, A. (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55: 263-288. Hiom, K., Tsaneva, I.R. and West, S.C. (1996) The directionality of RuvAB-mediated branch migration: in vitro studies with three-armed junctions. Genes Cells 1: 443-451. Honys, D. and Twell, D. (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640-652. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666-680. Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., et al. (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463-473. Ishida, S., Yuasa, T., Nakata, M. and Takahashi, Y. (2008) A Tobacco Calcium-Dependent Protein Kinase, CDPK1, Regulates the Transcription Factor REPRESSION OF SHOOT GROWTH in Response to Gibberellins. Plant Cell 20: 3273-3288. Ito, T., Nakata, M., Fukazawa, J., Ishida, S. and Takahashi, Y. (2010) Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. Plant Cell 22: 1592-1604. Ivashuta, S., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., et al. (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17: 2911-2921. Iwano, M., Entani, T., Shiba, H., Takayama, S. and Isogai, A. (2004) Calcium crystals in the anther of Petunia: the existence and biological significance in the pollination process. Plant Cell Physiol 45: 40-47. Jha, S. and Dutta, A. (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34: 521-533. Jonsson, Z.O., Dhar, S.K., Narlikar, G.J., Auty, R., Wagle, N., Pellman, D., et al. (2001) Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 276: 16279-16288. Kanemaki, M., Kurokawa, Y., Matsu-ura, T., Makino, Y., Masani, A., Okazaki, K., et al. (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274: 22437-22444. Kaur, S., Modi, P., Srivastava, V., Mudgal, R., Tikoo, S., Arora, P., et al. (2010) Chk1-dependent constitutive phosphorylation of BLM helicase at serine 646 decreases after DNA damage. Mol Cancer Res 8: 1234-1247. Lanteri, M.L., Pagnussat, G.C. and Lamattina, L. (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57: 1341-1351. Lee, T.T.T., Chung, M.C., Kao, Y.W., Wang, C.S., Chen, L.J. and Tzen, J.T.C. (2005) Specific expression of a sesame storage protein in transgenic rice bran. J Cereal Sci 41: 23-29. Li, R.J., Hua, W. and Lu, Y.T. (2006) Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem Bioph Res Co 342: 119-126. Li, W., Zeng, J., Li, Q., Zhao, L., Liu, T., Bjorkholm, M., et al. (2010) Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 9: 132. Makino, Y., Kanemaki, M., Kurokawa, Y., Koji, T. and Tamura, T. (1999) A rat RuvB-like protein, TIP49a, is a germ cell-enriched novel DNA helicase. J Biol Chem 274: 15329-15335. Malho, R. and Trewavas, A.J. (1996) Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. Plant Cell 8: 1935-1949. Matias, P.M., Gorynia, S., Donner, P. and Carrondo, M.A. (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281: 38918-38929. Moutinho, A., Trewavas, A.J. and Malho, R. (1998) Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10: 1499-1510. Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., et al. (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59: 528-539. Nam, K.H. and Li, J. (2004) The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16: 2406-2417. Ochem, A.E., Rechreche, H., Skopac, D. and Falaschi, A. (2008) Stimulation of the DNA unwinding activity of human DNA helicase II/Ku by phosphorylation. Arch Biochem Biophys 470: 1-7. Patel, S.S. and Donmez, I. (2006) Mechanisms of helicases. J Biol Chem 281: 18265-18268. Patharkar, O.R. and Cushman, J.C. (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24: 679-691. Pina, C., Pinto, F., Feijo, J.A. and Becker, J.D. (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138: 744-756. Puri, T., Wendler, P., Sigala, B., Saibil, H. and Tsaneva, I.R. (2007) Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 366: 179-192. Qiu, X.B., Lin, Y.L., Thome, K.C., Pian, P., Schlegel, B.P., Weremowicz, S., et al. (1998) An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 273: 27786-27793. Ray, S., Agarwal, P., Arora, R., Kapoor, S. and Tyagi, A.K. (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278: 493-505. Rodriguez Milla, M.A., Uno, Y., Chang, I.F., Townsend, J., Maher, E.A., Quilici, D., et al. (2006) A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580: 904-911. Sambrook, J.F. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. Sanders, D., Brownlee, C. and Harper, J.F. (1999) Communicating with calcium. Plant Cell 11: 691-706. Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428: 81-91. Shimizu, K.K., Ito, T., Ishiguro, S. and Okada, K. (2008) MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. Plant Cell Physiol 49: 1478-1483. Singleton, M.R., Dillingham, M.S. and Wigley, D.B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76: 23-50. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599. Tuteja, N., Beven, A.F., Shaw, P.J. and Tuteja, R. (2001) A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant J 25: 9-17. Tuteja, N., Tuteja, R., Rahman, K., Kang, L.Y. and Falaschi, A. (1990) A DNA helicase from human cells. Nucleic Acids Res 18: 6785-6792. Umate, P., Tuteja, R. and Tuteja, N. (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73: 449-465. Vashisht, A.A., Pradhan, A., Tuteja, R. and Tuteja, N. (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44: 76-87. Wan, B., Lin, Y. and Mou, T. (2007) Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581: 1179-1189. Watkins, N.J., Lemm, I., Ingelfinger, D., Schneider, C., Hossbach, M., Urlaub, H., et al. (2004) Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 16: 789-798. Wei, L.Q., Xu, W.Y., Deng, Z.Y., Su, Z., Xue, Y. and Wang, T. (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11: 338. Yoon, G.M., Dowd, P.E., Gilroy, S. and McCubbin, A.G. (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18: 867-878. Chapter 2 Ames, J.B., Ishima, R., Tanaka, T., Gordon, J.I., Stryer, L. and Ikura, M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature, 389, 198-202. Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Komatsu, S. (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol, 46, 356-366. Bush, D.S. (1995) Calcium Regulation in Plant Cells and its Role in Signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 95-122. Estruch, J.J., Kadwell, S., Merlin, E. and Crossland, L. (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci U S A, 91, 8837-8841. Jyothishwaran, G., Kotresha, D., Selvaraj, T., Srideshikan, S.H., Rajvanshi, P.K. and Jayabaskaran, C. (2007) A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Current Science, 93, 770-772. Li, A.L., Zhu, Y.F., Tan, X.M., Wang, X., Wei, B., Guo, H.Z., Zhang, Z.L., Chen, X.B., Zhao, G.Y., Kong, X.Y., Jia, J.Z. and Mao, L. (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol, 66, 429-443. Lu, S.X. and Hrabak, E.M. (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol, 128, 1008-1021. Makino, C.L., Dodd, R.L., Chen, J., Burns, M.E., Roca, A., Simon, M.I. and Baylor, D.A. (2004) Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol, 123, 729-741. Martin, M.L. and Busconi, L. (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 24, 429-435. McCabe, J.B. and Berthiaume, L.G. (1999) Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell, 10, 3771-3786. McLaughlin, S. and Aderem, A. (1995) The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci, 20, 272-276. Milligan, G., Parenti, M. and Magee, A.I. (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci, 20, 181-187. Podell, S. and Gribskov, M. (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics, 5, 37. Raichaudhuri, A., Bhattacharyya, R., Chaudhuri, S., Chakrabarti, P. and Dasgupta, M. (2006) Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J Biol Chem, 281, 10399-10409. Resh, M.D. (1994) Myristylation and palmitylation of Src family members: the fats of the matter. Cell, 76, 411-413. Sambrook, J.F. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual 3rd edn. New York: Cold Spring Harbor Laboratory Press. Sheen, J. (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 274, 1900-1902. Valentine, K.G., Mesleh, M.F., Opella, S.J., Ikura, M. and Ames, J.B. (2003) Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry, 42, 6333-6340. Yalovsky, S., Rodr Guez-Concepcion, M. and Gruissem, W. (1999) Lipid modifications of proteins - slipping in and out of membranes. Trends Plant Sci, 4, 439-445. Yoon, G.M., Dowd, P.E., Gilroy, S. and McCubbin, A.G. (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell, 18, 867-878. Zha, J., Weiler, S., Oh, K.J., Wei, M.C. and Korsmeyer, S.J. (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science, 290, 1761-1765. Chapter 3 李鐘財 (2000) 水稻花粉成熟期專一性表現基因OSCK1之選殖與分析. 台中市: 國立中興大學. 林立菁 (2005) 以酵母菌雙雜交法系統分析水稻結鈣激活酶與其及結合蛋白質之交互作用. 台中市: 國立中興大學. 林忠威 (2007) 水稻結鈣激活酶基因群之表現分布及其僅於花粉大量表達成員之功能探討. 台中市: 立中興大學. Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Komatsu, S. (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol, 46, 356-366. Bachvarov, D.R. and Ivanov, I.G. (1983a) Large scale purification of plasmid DNA. Preparative biochemistry, 13, 161-166. Bachvarov, D.R. and Ivanov, I.G. (1983b) Large scale purification of plasmid DNA. Prep Biochem, 13, 161-166. Bamburg, J.R. (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol, 15, 185-230. Bibikova, T.N., Zhigilei, A. and Gilroy, S. (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta, 203, 495-505. Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B. and Brinkmann, V. (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell, 117, 503-514. Birnboim, H.C. and Doly, J. (1979a) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 7, 1513-1523. Birnboim, H.C. and Doly, J. (1979b) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 7, 1513-1523. Blancaflor, E.B. (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul, 21, 120-136. Chandran, V., Stollar, E.J., Lindorff-Larsen, K., Harper, J.F., Chazin, W.J., Dobson, C.M., Luisi, B.F. and Christodoulou, J. (2006) Structure of the regulatory apparatus of a calciumdependent protein kinase (CDPK): A novel mode of calmodulin-target recognition. Journal of Molecular Biology, 357, 400-410. Chehab, E.W., Patharkar, O.R. and Cushman, J.C. (2007) Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum. Planta, 225, 783-799. Chehab, E.W., Patharkar, O.R., Hegeman, A.D., Taybi, T. and Cushman, J.C. (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol, 135, 1430-1446. Chen, C.Y.-h., Cheung, A. Y., and Wu, H. -m. (2003) Rac-like GTPase and actin depolymerizing factor (ADF) mediate pollen germination and tube growth. Plant Cell, 15, 237-249. Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M. and Cheung, A.Y. (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell, 14, 2175-2190. Cheng, S.H., Willmann, M.R., Chen, H.C. and Sheen, J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 129, 469-485. Derksen, J., Ruttens, T., van Amstel, T., de Win, A., Doris, F., and Steer, M. (1995) Regulation of polen tube growth. Acta Botany Neerl., 44, 93-119. Evans, N.H., McAinsh, M.R. and Hetherington, A.M. (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol, 4, 415-420. Geitmann, A., Snowman, B.N., Emons, A.M. and Franklin-Tong, V.E. (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell, 12, 1239-1251. Golovkin, M. and Reddy, A.S.N. (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. P Natl Acad Sci USA, 100, 10558-10563. Green, J.L., Rees-Channer, R.R., Howell, S.A., Martin, S.R., Knuepfer, E., Taylor, H.M., Grainger, M. and Holder, A.A. (2008) The motor complex of Plasmodium falciparum: phosphorylation by a calcium-dependent protein kinase. J Biol Chem, 283, 30980-30989. Hamamura, K., Tsuji, M., Hotta, H., Ohkawa, Y., Takahashi, M., Shibuya, H., Nakashima, H., Yamauchi, Y., Hashimoto, N., Hattori, H., Ueda, M. and Furukawa, K. (2011) Functional Activation of Src Family Kinase Yes Protein Is Essential for the Enhanced Malignant Properties of Human Melanoma Cells Expressing Ganglioside GD3. J Biol Chem, 286, 18526-18537. Hardin, S.C., Tang, G.Q., Scholz, A., Holtgraewe, D., Winter, H. and Huber, S.C. (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J, 35, 588-603. Harmon, A.C., Gribskov, M. and Harper, J.F. (2000) CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci, 5, 154-159. Harmon, A.C., Putnam-Evans, C. and Cormier, M.J. (1987) A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol, 83, 830-837. Harmon, A.C., Yoo, B.C. and McCaffery, C. (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 33, 7278-7287. Harmon, A.C., Yoo, B.-C., Lee, J.-Y., Zhang, Y., & Roberts, D. M. (1995) Protein Phosphorylation in Plants, Proceedings of the Phytochemical Society of Europe. 39, 267-277. Harper, J.F., Breton, G. and Harmon, A. (2004) Decoding Ca(2+) signals through plant protein kinases. Annu Rev Plant Biol, 55, 263-288. Harper, J.F. and Harmon, A. (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol, 6, 555-566. Harper, J.F., Huang, J.F. and Lloyd, S.J. (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 33, 7267-7277. Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H. and Harmon, A.C. (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science, 252, 951-954. Hepler, P.K. (1997) Tip growth in pollen tubes: Calcium leads the way. Trends Plant Sci, 2, 79-80. Hepler, P.K., Vidali, L. and Cheung, A.Y. (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol, 17, 159-187. Hernandez Sebastia, C., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys, 428, 81-91. Hetherington AM, T.A. (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145, 67-71. Higgs, H.N. and Pollard, T.D. (2001) Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem, 70, 649-676. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K. and Harmon, A.C. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 132, 666-680. Huang, S., Blanchoin, L., Chaudhry, F., Franklin-Tong, V.E. and Staiger, C.J. (2004) A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem, 279, 23364-23375. Hwang, I., Sze, H. and Harper, J.F. (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci U S A, 97, 6224-6229. Ishino, T., Orito, Y., Chinzei, Y. and Yuda, M. (2006) A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol, 59, 1175-1184. Ito, T., Nakata, M., Fukazawa, J., Ishida, S. and Takahashi, Y. (2010) Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. Plant Cell, 22, 1592-1604. Ivashuta, S., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., Vance, C.P., Harrison, M.J. and Gantt, J.S. (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell, 17, 2911-2921. Kemp, B.E. and Pearson, R.B. (1991) Intrasteric regulation of protein kinases and phosphatases. Biochim Biophys Acta, 1094, 67-76. Kieschnick, H., Wakefield, T., Narducci, C.A. and Beckers, C. (2001) Toxoplasma gondii attachment to host cells is regulated by a calmodulin-like domain protein kinase. J Biol Chem, 276, 12369-12377. Knight, H. and Knight, M.R. (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci, 6, 262-267. Lee, S.S., Cho, H.S., Yoon, G.M., Ahn, J.W., Kim, H.H. and Pai, H.S. (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J, 33, 825-840. Li, Y.Q., Zhang, H. Q., Pierso, E. S., Huang, H. F., Hepler, P. K., and Cresti, M. (1996) Enforced growth-rate fluctuatuion causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta, 200, 41-49. Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I. and Hepler, P.K. (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta, 221, 95-104. Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S. and Gruissem, W. (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 14 Suppl, S389-400. Malho, R., Read, N. D., Pais, M, and Trewavas, A. J. (1994) Role of cytosolic calcium in the reorientation of pollen tube growth. plant Journal, 5, 331-341. Malho, R. and Trewavas, A.J. (1996) Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. Plant Cell, 8, 1935-1949. McGough, A. (1998) F-actin-binding proteins. Curr Opin Struct Biol, 8, 166-176. Messerli, M. and Robinson, K.R. (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 110 ( Pt 11), 1269-1278. Millward, T.A., Heizmann, C.W., Schafer, B.W. and Hemmings, B.A. (1998) Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. EMBO J, 17, 5913-5922. Ogawa, N., Yabuta, N., Ueno, Y. and Izui, K. (1998) Characterization of a maize Ca(2+)-dependent protein kinase phosphorylating phosphoenolpyruvate carboxylase. Plant Cell Physiol, 39, 1010-1019. Patharkar, O.R. and Cushman, J.C. (2000a) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J, 24, 679-691. Patharkar, O.R. and Cushman, J.C. (2000b) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J, 24, 679-691. Patharkar, O.R. and Cushman, J.C. (2006) A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta, 225, 57-73. Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M. and Hepler, P.K. (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell, 6, 1815-1828. Putnam-Evans, C.L., Harmon, A.C. and Cormier, M.J. (1990) Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry, 29, 2488-2495. Raichaudhuri, A., Bhattacharyya, R., Chaudhuri, S., Chakrabarti, P. and Dasgupta, M. (2006) Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J Biol Chem, 281, 10399-10409. Ranjan, R., Ahmed, A., Gourinath, S. and Sharma, P. (2009) Dissection of mechanisms involved in the regulation of Plasmodium falciparum calcium-dependent protein kinase 4. J Biol Chem, 284, 15267-15276. Rathore, K.S., Cork, R.J. and Robinson, K.R. (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol, 148, 612-619. Romeis, T., Ludwig, A.A., Martin, R. and Jones, J.D. (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J, 20, 5556-5567. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 23, 319-327. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406-425. Sanders, D., Brownlee, C. and Harper, J.F. (1999) Communicating with calcium. Plant Cell, 11, 691-706. Schiestl, R.H. and Gietz, R.D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet, 16, 339-346. Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys, 428, 81-91. Sheen, J. (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 274, 1900-1902. Siden-Kiamos, I., Ecker, A., Nyback, S., Louis, C., Sinden, R.E. and Billker, O. (2006) Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol Microbiol, 60, 1355-1363. Snedden, W.A. and Fromm, H. (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol, 151, 35-66. Soderling, T.R. (1990) Protein kinases. Regulation by autoinhibitory domains. J Biol Chem, 265, 1823-1826. Staiger, C.J., Gibbon, B. C., Kovar, D. R., and Zonlia, L. E. (1997) Profilin and actin depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci, 2, 275-281. Steer, M.W., and Steer, J. M. (1989) Pollen tube tip growth. New Phytol., 111, 323-358. Suen, K.L. and Choi, J.H. (1991) Isolation and sequence analysis of a cDNA clone for a carrot calcium-dependent protein kinase: homology to calcium/calmodulin-dependent protein kinases and to calmodulin. Plant Mol Biol, 17, 581-590. Syam Prakash, S.R. and Jayabaskaran, C. (2006) Expression and localization of calcium-dependent protein kinase isoforms in chickpea. J Plant Physiol, 163, 1135-1149. Szczegielniak, J., Klimecka, M., Liwosz, A., Ciesielski, A., Kaczanowski, S., Dobrowolska, G., Harmon, A.C. and Muszynska, G. (2005) A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol, 139, 1970-1983. Tang, G.Q., Hardin, S.C., Dewey, R. and Huber, S.C. (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J, 34, 77-93. Transy, C. and Legrain, P. (1995) The two-hybrid: an in vivo protein-protein interaction assay. Mol Biol Rep, 21, 119-127. Vidali, L., McKenna, S.T. and Hepler, P.K. (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell, 12, 2534-2545. Waksman-Institute (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol, 3, 20. Yalovsky, S., Rodr Guez-Concepcion, M. and Gruissem, W. (1999) Lipid modifications of proteins - slipping in and out of membraneszh_TW
dc.identifier.urihttp://hdl.handle.net/11455/36314-
dc.description.abstract第一章 已知在植物及某些原蟲之訊號傳遞中,CDPK扮演著接收訊息的傳遞者,以可逆式的磷酸化受質反應傳遞鈣離子的訊號。為了探討水稻CDPK蛋白的作用機制,以含帶OsCPK26激活區的蛋白為餌,利用酵母菌雙雜交法,篩選出能與OsCPK26結合的蛋白或受質蛋白,結果鑑定為一種RuvB-like 2解旋酶,命名為OIP30。利用遠西方墨點法、免疫共沉澱法及蛋白下拉實驗觀察,均發現兩者具有明顯之交互作用現象;分析其酵素活性顯示在鈣離子存在情況之下,OIP30可被OsCPK26磷酸化,但卻無法被同為花粉表現之OsCPK2磷酸化。再者,OIP30的ATPase活性對於DNA或RNA受質並無明顯的偏好,但helicase解旋活性則具有3''到5''方向的專一性。為檢驗OsCPK26磷酸化OIP30是否賦予其不同的活性,故比較磷酸化前、後OIP30的ATPase及helicase酵素活性,發現二者均在被磷酸化後顯著提升,此結果暗示水稻花粉中OIP30可能為OsCPK26之受質蛋白。 第二章 實驗室先前利用差異性選殖方式篩選出主要於花粉成熟時期表現之基因,命名為 OsCPK26 (Oryza sativa calcium-dependent protein kinase 26),以酵母菌雙雜交法篩選出OsCPK26之下游受質蛋白,篩選出一個結合蛋白命名為OIP30 (OsCPK26-interacting protein),經序列比對發現OIP30為RuvB-like DNA 2解旋酶,OIP30受OsCPK26磷酸化後,其解旋酶及ATP水解酶的活性皆提升約三倍之多。本實驗分析OIP30與OsCPK26於百合花粉管次細胞之分布,利用超高速離心將水稻成熟花粉之初萃液區分為soluble 及membrane 部分,以西方墨點法偵測,發現成熟花粉中之OIP30與OsCPK26皆位於membrane 部分,進一步利用點突變將OsCPK26 蛋白N端的荳蔻酸訊號進行G2A突變,使OsCPK26失去荳蔻酸之修飾作用,結果證實荳蔻酸為OsCPK26蛋白附著在膜上的主要因素。以螢光蛋白標定方式追蹤,OsCPK26位於細胞膜上而OIP30位於細胞質中,兩種蛋白共表現時,則其訊號均位於細胞膜上;進而利用不活化型之OsCPK26(CI) 代替活化型 OsCPK26 (wild type) ,發現OsCPK26(CI) 與OIP30也共分佈於細胞膜上,但明顯不同的是OIP30與OsCPK26(CI)的訊號完全重疊,這與OsCPK26(wt) 與OIP30訊號並非完全重疊的現象明顯不同,猜測可能是磷酸化反應後造成OsCPK26/OIP30複合體構型改變所致。進一步利用OsCPK26(G2A) 突變型與OIP30共表現於百合花粉管中進行觀察,當OsCPK26(G2A)或OIP30單獨表現時,此二蛋白皆位於細胞質,若OsCPK26(G2A) 與OIP30共表現,則此二蛋白明顯共同進入細胞核內,有趣的是,OsCPK26於C端具明顯的進核訊號 (NLS) ,雖有明顯進核訊號,但不論是活化型、非活化型或是G2A突變型之OsCPK26皆無法單獨進入花粉管核內,必需是以G2A突變型蛋白與OIP30蛋白結合後,方能進入花粉管核,這暗示著OIP30為OsCPK26進核的必要條件。 第三章 鈣離子是調控花粉萌發之必要因素,故CDPK (calcium-dependent calmodulin-independent protein kinase) 基因與調控花粉萌發及花粉管之延長的過程有關。先前實驗室利用酵母菌雙雜交法,篩選可能為OsCPK25/26的結合蛋白或下游受質蛋白,意外發現有兩個OsCPK蛋白,分別為OsCPK21與OsCPK29,這兩個CDPK皆主要表現於水稻成熟花粉中;由酵母菌雙雜交法篩選到兩個CDPK基因,這暗示著CDPK形成複合體的可能性。OsCPK2、OsCPK25/26與OsCPK29皆主要表現於水稻成熟花粉中,故探討水稻成熟花粉中CDPK形成複合體的可能性;依據水稻基因組資料庫的資訊,設計引子進行RT-PCR,將主要表現於水稻成熟花粉之CDPK皆選殖出,共得到六個OsCPK全長cDNA基因,一一配對進行酵母菌雙雜交測試,結果發現除了OsCPK25/26沒有之外其他CDPKs皆與OsCPK2有交互結合現象,因此選擇花粉中表達量較高的OsCPK2與OsCPK29進行實驗。以免疫共沉澱實驗中發現OsCPK2與OsCPK29可形成複合體,且鈣離子為形成複合體之必要因素;進一步以受質磷酸化實驗觀察複合體之活性,發現複合體之磷酸激酶活性上升,甚至以CI (catalytic inactive form) 與wt CDPK融合蛋白配對之受質磷酸化實驗,同樣可觀察到複合體之活性上升。Chandran (2006) 分析蛋白結晶結構指出 AtCPK1 之J-CaML可形成雙聚體,其中之F436 會坐落於C-lobe中,為形成雙聚體之主要結合力量,利用ClustalW程式比對OsCPK2、OsCPK29與AtCPK1之J-CaML胺基酸序列,比對結果發現與AtCPK1與OsCPK29相似度有60%、與OsCPK2相似度高達73%,比對序列中發現OsCPK2之F347與OsCPK29之F370對應於AtCPK1之F436,進一步利用Swiss-Model軟體模擬出OsCPK2及OsCPK29之立體結構,結構比對發現OsCPK2之F347與OsCPK29之F370同樣皆會落在C-lobe口袋中,此與AtCPK1結晶觀察結論相同;由in vitro及in vivo實驗果顯示,OsCPK2與OsCPK29可形成複合體,且複合體之活性有提升之現象。zh_TW
dc.description.abstractChapter 1 Calcium ion is a well-known essential component for pollen germination and tube elongation. Several calcium-dependent protein kinases (CDPKs) are expressed predominantly in mature pollen grains and play a critical role in pollen. However, none of their interacting proteins or downstream substrates have been identified. Using yeast two-hybrid screening, we isolated OsCPK25/26-interacting protein 30 (OIP30), which is also predominantly expressed in pollen. OIP30 encodes a RuvB-like DNA helicase 2 (RuvBL2) that is well conserved in eukaryotic species from yeast to human. Yeast and Drosophila defective in RuvBL2 are nonviable. The interaction between OsCPK26 and OIP30 was confirmed by far-western blot and pull-down experiments. OIP30 was phosphorylated in a calcium-dependent manner by OsCPK26 but not OsCPK2, which is highly similar to OsCPK26 in sequence and expression profile. OIP30 unwound partial duplex DNA with a 3''to 5''directionality by ATP hydrolysis. Concurrently, the ATPase activity of OIP30 depended on single-stranded DNA. OsCPK26 phosphorylated OIP30 and enhanced both its helicase and ATPase activity about threefold. OIP30 may be the potential downstream substrate for OsCPK25/26 in pollen. This report characterizes a RuvBL in plants and links its activities with its upstream regulator. Chapter 2 OIP30, a RuvB-like DNA helicase 2, was identified as downstream substrate for OsCPK26, a calcium-dependent protein kinase (CDPK) that expressed predominantly in mature pollen of rice. OsCPK26 phosphorylated OIP30 and enhanced both its helicase and ATPase activity about threefold. In this report, we characterized subcellular distributions of these two proteins in germinating lily pollen. In the mature pollen grain of rice, both OsCPK26 and OIP30 were found to be located predominantly in membrane fraction. A G2A mutation demonstrated that the N-terminal myristoyl modification of OsCPK26 is essential for membrane anchorage of both OsCPK26 and OIP30. In contrast to the catalytically inactive (CI) OsCPK26 that seem to lock OIP30, protein signals of wild type OsCPK26 and OIP30 were not fully overlapped on membrane, implicating that kinase reaction may relax their complex conformation. Moreover, for OIP30 to act as a DNA helicase, a nuclear targeting is required. Using OsCPK26(G2A) mutant to bypass the membrane anchorage, we found that both OsCPK26(G2A) and OIP30 remained in cytoplasm if expressed alone, but highly co-localized in nucleus if co-expressed. Interestingly, beside a bipartite nuclear localization signal (NLS) at the C-terminus of OsCPK26, kinase activity was also found to be crucial for nuclear import of the OsCPK26/OIP30 complex. There seem to be a tight regulation which only allows the active OsCPK26/OIP30 complex to enter nucleus in pollen tube. Chapter 3 Calcium is well known to play critical roles in pollen germination and tube elongation. Calcium-dependent calmodulin-independent protein kinases (CDPKs) that expressed predominantly in mature pollen may be responsible for transducing calcium signals to downstream substrates in pollen. Using the yeast two-hybrid (Y2H) in substrate hunting, we were surprised to find two CDPKs, OsCPK21 and OsCPK29, strongly interacted with bait protein, the kinase domain of OsCPK25/26. RT-PCR examinations revealed that OsCPK21 and OsCPK29 were also expressed predominantly in pollen, implicating possibility of complex formation between different CDPKs in pollen. A systematic survey of the seven pollen-predominant OsCPKs by Y2H showed various interactions among different OsCPKs, with OsCPK2 exhibited the most prominent affinities with all other OsCPKs, except for OsCPK25/26. OsCPK2 and OsCPK29 were chosen for further studies of their protein-protein interactions. Pull-down experiments using OsCPK29-HA and c-myc-OsCPK2 that co-expressed in tobacco leaf demonstrated possibility of their complex formation in plant cell. Moreover, calcium ion is required for this protein complex as EGTA dissociate it. As synergistic effects were observed for kinase activities of recombinant OsCPK2 and OsCPK29 when co-incubated, we suspected that it may be caused by heterocomplex formation between two proteins. To simplify assay, we use catalytic inactive (CI) OsCPKs instead. Interestingly, constant amount of OsCPK exhibited enhanced activities that proportional to the increasing amount of OsCPK(CI) in assay, suggesting that complex formation between CDPKs may stimulate its kinase activity in a phosphorylation-independent manner.en_US
dc.description.tableofcontents前言…………………………………………………1 Chapter 1 : OIP30, a RuvB-like DNA Helicase 2, is a Potential Substrate for the Pollen-Predominant OsCPK25/26 in Rice Chinese abstract…………………………………………………4 English abstract…………………………………………………5 Introduction………………………………………………………6 Materials and Methods…………………………………………9 Results……………………………………………………………16 Discussions………………………………………………………22 References………………………………………………………28 Figures and legends……………………………………………33 Chapter 2 : Mutual Dependence of OsCPK26 and OIP30 in Their Membrane-binding to Nuclear-targeting Chinese abstract……………………………………………48 English abstract……………………………………………49 Introduction…………………………………………………50 Materials and Methods……………………………………53 Results………………………………………………………56 References…………………………………………………61 Figures and legends………………………………………63 Chapter 3 : Enhance of Kinase Activity Mediated by Complex Formation between Pollen-predominant OsCPK2 and OsCPK29 Chinese abstract…………………………………………74 English abstract…………………………………………75 前人研究……………………………………………………76 材料方法……………………………………………………83 結果…………………………………………………………90 討論…………………………………………………………95 參考文獻……………………………………………………98 表、圖及附錄………………………………………………104zh_TW
dc.language.isoen_USzh_TW
dc.publisher生物科技學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907201112394100en_US
dc.subject結鈣激酶花粉zh_TW
dc.subjectCalcium-dependent Protein Kinaseen_US
dc.subject受質zh_TW
dc.subject解旋酶荳蔻酸zh_TW
dc.subject進核訊號zh_TW
dc.subject雙聚體zh_TW
dc.subjectOryza sativa L.en_US
dc.subjectPollenen_US
dc.subjectRuvB-like DNA Helicaseen_US
dc.subjectSubstrateen_US
dc.subjectN-myristoylationen_US
dc.subjectNuclear localizationen_US
dc.subjectdimeren_US
dc.title水稻花粉結鈣激酶與其受質蛋白生化特性與功能之研究zh_TW
dc.titleBiochemical and Functional Characterization of Pollen-Predominant CDPKs and a Downstream Substrate in Riceen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生物科技學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.