Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3633
標題: 鎳-黏土成長奈米碳管於電化學生物感測器之應用
Applications of carbon nanotubes synthesized over the Ni particles on clay for Electrochemical biosensor
作者: 劉又禎
Liu, You-Chen
關鍵字: biosensors
生物感測器
clay
carbon nanotubes
黏土
奈米碳管
出版社: 化學工程學系所
引用: 1.Aizawa, M., Seyama, T., Fueki, K., Shiokawa, J., and Suzuki, S., Proceedings of the International Meeting of Chemical Sensors. Elsevier ed. 1983, Fukuoka: Amsterdam. 683. 2.許峰碩, 奈米碳黑在免疫層析檢測上的應用. 2000. 8. 3.Crow, D.R., Principles and Application of Electrochemistry2nd Ed. 1979, London: Chapman and Hall Ltd. 4.Plectcher, D., A First Course in Electrode Processes. The Electrochemical Consultancy. 1991, England. 5.Plectcher, D. and Walsh, F.C., Industrial Electrochemistry. 1990, New York: Chapman and Hall Ltd. 6.田福助, 電化學理論與應用. 1996, 臺北市: 高立圖書出版公司. 7.Wang, S.G., Zhang, Q., Wang, R., Yoon, S.F., Ahn, J., Yang, D.J., Tian, J.Z., Li, J.Q., and Zhou, Q., Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications, 2003. 5: p. 800. 8.郭陽明, 循環伏安計量法的原理與應用: 中國文化大學應用化學系. 9.Clark, L.C., Lyons, C., and N.Y.Acad, A., Electrode system for continuous monitoring in cardiovascular surgery. Science, 1962. 102: p. 29. 10.呂俐瑩, 以幾丁寡醣修飾平面是葡萄唐生物感測器之研究. 2003: 國立雲林科技大學工業化學與災害防治研究所碩士論文 11.Pan, C.W., Chou, J.C., Kao, I.K., Sun, T.P., and Hsiung, S.K., Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device. IEEE Sensors Journal, 2003. 3: p. 164-170. 12.Turner, R.F.B., Harrison, D.J., and Baltes, H.P., A CMOS potentiostat for amperometric chemical sensors. IEEE Journal of Solid-State Circuits, 1987. Sc-22(3): p. 473-478. 13.Jdanova, A.S., Poyard, S., Soldatkin, A.P., Renault, N.J., and Martelet, C., Conductometric urea sensor use of additional membranes for the improvement of its analytical characteristics. Analytica Chimica Acta, 1996. 321: p. 35. 14.Gorton, L. and Dominguez, E., Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Reviews in Molecular Biotechnology, 2002. 82(4): p. 371-392. 15.Santos, A.d.S., Gorton, L., and Kubota, L.T., Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH. Electrochimica Acta, 2002. 47(22). 16.Tatsuma, T., Okawa , Y., and Watanabe, T., Enzyme Monolayer- and Bilayer-Modified Electrodes for the Determination of Hydrogen Peroxide and Glucose. Anal.Chem, 1989. 61: p. 2352-2355. 17.Bartlett, P.N. and Cooper, J.M., A review of the immobilization of enzymes in electropolymerized films. Journal of Electroanalytical Chemistry 1993. 362(1-2): p. 1-12. 18.Liu, H. and Deng, J., An amperometric lactate sensor employing tetrathiafulvalene in nafion film as electron shuttle. Electrochima Acta, 1995. 40: p. 1845. 19.Furbee, J.W., Thomas, C.R., Kelly, R.S., and Malachowski, M.R., Mediated electrochemical reduction of cytochrome c and tyrosinase at perfluorosulfonated ionomer coated electrodes,. Analytical chemistry, 1993. 65: p. 1654. 20.Kong, J., R, N., Franklin, Zhou, C., Chapline, M.G., Peng, S., and Cho, K., Nanotube molecular wires as chemical sensors. Science, 2000. 287: p. 622-625. 21.Zhao, J.J., Buldum, A., Han, J., and Lu, P., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2000. 13(2): p. 195-200. 22.Grim, R.E., Clay Mineralogy 2nd ed. 1968, New York: McGraw-Hill 23.Strawn, D.G. and Sparks, D.L., The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite. Journal of Colloid Interface Science, 1999. 216: p. 257-269. 24.F, S., T, F.M., A, V., and L, G., Fate of herbicides influence by biotic and abiotic interaction. Chemoshere, 1999. 39(2): p. 333-341. 25.Kroto, H.W., J.R.Heath, S.C.O''Brien, R.F.Curl, and R.E.Smalley, C60:buckminsterfullerene. Nature, 1985. 318: p. 162-163. 26.Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56. 27.Odom, T.W., Huang, J.L., Kim, P., and Liebe, C.M., Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 2000. 104(13): p. 2794-2809. 28.Amelinckx, S., Electron diffraction and microscopy of nanotubes. Reports on progress in physics, 1999. 62(11): p. 1471-1524. 29.M.S.dresselhaus﹐, J. Mater. Res, 1998. 13: p. 2355. 30.Iijima, S. and T.Ichihashi, Pentagons heptagons and negative curvature in graphite microtubule growth. Nature, 1992. 356: p. 776-778. 31.Dekker, C., Carbon nanotubes as molecular quantum wires. Physics Today, 1999. 52: p. 22. 32.Treacy, M.M.J., Ebbsen, T.W., and M.Gibosn, J., Exceptionally high Young''s modulus observed for individual carbon nanotubes. Nature, 1996. 381: p. 678-680. 33.M.Ajayan, P. and Ebbesen, T.W., Nanometre-size tubes of carbon. Report on Progress Physics, 1997. 60: p. 1025. 34.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments. chapter 2. 35.Journet, C. and P.Bernier, Production of carbon nanotubes. Applied physics A: Materials scient and processing, 1998. 67(1): p. 1-9. 36.Yacaman, M.J., Yoshida, M.M., Rendon, L., and Saniesteban, J.G., Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett, 1993. 62(2): p. 202. 37.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett, 1995. 243(1-2): p. 49-54. 38.http://140.114.18.223/~hcshih/diamond/nanotube.html. 2000. 39.Davis, J.J., Coleman, K.S., Azamian, B.R., Bagshaw, C.B., and H.Green, M.L., Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry : a European journal, 2003. 9: p. 3732. 40.http://psroc.phys.ntu.edu.tw/bimonth/v28/704.pdf. 41.Storri, S., Santoni, T., Minunni, M., and Mascini, M., Surface modifications for the development of piezoimmunosensors. Biosensor and Bioelectron, 1998. 13: p. 347. 42.Uttenthaler, E., Kößlinger, C., and Drost, S., Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosensor and Bioelectron, 1998. 13: p. 1279. 43.Harteveld, J.L.N., Nieuwenhuizen, M.S., and Wils, E.R.J., Detection of staphylococcal enterotoxin B employing a piezoelectric crystal immunosensor. Biosensor and Bioelectron, 1997. 12: p. 661. 44.Yokoyama, K., Ikebukuro, K., Tamiya, E., Karube, I., Ichiki, N., and Arikawa, Y., Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Analytica Chimica Acta, 1995. 304: p. 139. 45.Clark, L.C., Lyons, C., and N.Y.Acad, A., Electrode system for continuous monitoring in cardiovascular surgery. Science, 1962. 102: p. 29. 46.Updike, S.J. and Hicks, G.P., The enzyme electrode. Nature(London), 1967. 214: p. 986-988. 47.Takahiko, K., Hiroko, I.K., and Yoshiyuki, O., Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system. Analytical Chemistry, 1994. 66: p. 1231. 48.Wang, J. and Angnes, L., Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Analytical Chemistry, 1992. 64: p. 456. 49.Sylvia, V.S., Raymond, J.P., and Alexander, M.Y., Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Analytical Chemistry, 1990. 62: p. 1111. 50.Hale, P.D., Boguslavsky, L.I., Inagaki, T., Karan, H.I., Lee, H.S., A.Skotheim, Y., and Okamoto, Y., Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Analytical Chemistry, 1991. 63: p. 677. 51.胡啟章, 電化學原理與方法. 2002, 台北市: 五南圖書出版股份有限公司. 52.Liu, S. and Ju, H., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003 19: p. 177-183.
摘要: 本研究目的為製備奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極,並將電極應用於偵測過氧化氫。在pH=7 的磷酸緩衝溶液下,奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極的操作電壓為-0.6V。當過氧化氫累積濃度為12.8mM 時,奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極能產生較高的電流為136.87μA。且在掃描速率為25 到200mV/s,整個電催化過程為表面控制。 而奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極, 在含有8mg/ml 的 CNTs-Clay 量,和取6μl的CNTs-Clay/Nafion 溶液以及掃描速率為200rpm的最佳條件下,其靈敏度為10942 nA/mM,應答時間為5 秒,偵測範圍為0.1~12.8mM 的過氧化氫。 在葡萄糖偵測方面,當葡萄糖氧化酵素濃度為2mg/ml 時,靈敏度顯 示為1718nA/mM,線性範圍0.2~1.3mM,應答時間為10 秒,而葡萄糖濃度在2.8mM 時,應答電流為3.02μA。 關鍵字:生物感測器,黏土,奈米碳管
The preparation of biosensors based on the carbon nanotubes (CNTs)-Clay/Nafion coated on the thin film glassy carbon electrode (GCE) fordetecting the hydrogen peroxide (H2O2) was investigated. The CNTs-Clay/Nafion with a operating potential of -0.6 V in 0.1 M, pH 7.0 phosphate buffer solution. The superior performance of higher current of 136.87 μA with the accumulation of 12.8mM H2O2 was observed as the CNTs-Clay/Nafion modified glassy carbon electrode. The response has shown a surface-controlled electrocatalyze process determined in the scan rate range from 25 to 200 mV/s. Under the optimal conditions of 8mg/ml CNTs-Clay, 6μl CNTs-Clay/Nafion solution, pH 7.0 phosphate buffer solution and agitation speed of 200rpm, the sensitivity and response time of the CNTs-Clay/Nafion/GCE biosensor were 10942 nA/mM and 5 seconds,respectively, in the detecting range of 0.1~12.8mM H2O2 . The resulting sensor displays a high sensitivity (1718nA/mM) and a linear range from 0.2 to 1.3 mM, the response time was 10 seconds for glucose determination, the current of 3.02 μA with the accumulation of 2.8mM glucose. Key words: biosensors, clay, carbon nanotubes
URI: http://hdl.handle.net/11455/3633
其他識別: U0005-1607200715565000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200715565000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.