Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3633
DC FieldValueLanguage
dc.contributor楊鴻銘zh_TW
dc.contributorHung-Ming Yungen_US
dc.contributor陳炎輝zh_TW
dc.contributor張新福zh_TW
dc.contributor王飛龍zh_TW
dc.contributorYen-Hui Chenen_US
dc.contributorHsin-Fu Changen_US
dc.contributorFei-Lung Wangen_US
dc.contributor.advisor鄭紀民zh_TW
dc.contributor.advisorChi-Min Chengen_US
dc.contributor.author劉又禎zh_TW
dc.contributor.authorLiu, You-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T05:32:20Z-
dc.date.available2014-06-06T05:32:20Z-
dc.identifierU0005-1607200715565000zh_TW
dc.identifier.citation1.Aizawa, M., Seyama, T., Fueki, K., Shiokawa, J., and Suzuki, S., Proceedings of the International Meeting of Chemical Sensors. Elsevier ed. 1983, Fukuoka: Amsterdam. 683. 2.許峰碩, 奈米碳黑在免疫層析檢測上的應用. 2000. 8. 3.Crow, D.R., Principles and Application of Electrochemistry2nd Ed. 1979, London: Chapman and Hall Ltd. 4.Plectcher, D., A First Course in Electrode Processes. The Electrochemical Consultancy. 1991, England. 5.Plectcher, D. and Walsh, F.C., Industrial Electrochemistry. 1990, New York: Chapman and Hall Ltd. 6.田福助, 電化學理論與應用. 1996, 臺北市: 高立圖書出版公司. 7.Wang, S.G., Zhang, Q., Wang, R., Yoon, S.F., Ahn, J., Yang, D.J., Tian, J.Z., Li, J.Q., and Zhou, Q., Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications, 2003. 5: p. 800. 8.郭陽明, 循環伏安計量法的原理與應用: 中國文化大學應用化學系. 9.Clark, L.C., Lyons, C., and N.Y.Acad, A., Electrode system for continuous monitoring in cardiovascular surgery. Science, 1962. 102: p. 29. 10.呂俐瑩, 以幾丁寡醣修飾平面是葡萄唐生物感測器之研究. 2003: 國立雲林科技大學工業化學與災害防治研究所碩士論文 11.Pan, C.W., Chou, J.C., Kao, I.K., Sun, T.P., and Hsiung, S.K., Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device. IEEE Sensors Journal, 2003. 3: p. 164-170. 12.Turner, R.F.B., Harrison, D.J., and Baltes, H.P., A CMOS potentiostat for amperometric chemical sensors. IEEE Journal of Solid-State Circuits, 1987. Sc-22(3): p. 473-478. 13.Jdanova, A.S., Poyard, S., Soldatkin, A.P., Renault, N.J., and Martelet, C., Conductometric urea sensor use of additional membranes for the improvement of its analytical characteristics. Analytica Chimica Acta, 1996. 321: p. 35. 14.Gorton, L. and Dominguez, E., Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Reviews in Molecular Biotechnology, 2002. 82(4): p. 371-392. 15.Santos, A.d.S., Gorton, L., and Kubota, L.T., Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH. Electrochimica Acta, 2002. 47(22). 16.Tatsuma, T., Okawa , Y., and Watanabe, T., Enzyme Monolayer- and Bilayer-Modified Electrodes for the Determination of Hydrogen Peroxide and Glucose. Anal.Chem, 1989. 61: p. 2352-2355. 17.Bartlett, P.N. and Cooper, J.M., A review of the immobilization of enzymes in electropolymerized films. Journal of Electroanalytical Chemistry 1993. 362(1-2): p. 1-12. 18.Liu, H. and Deng, J., An amperometric lactate sensor employing tetrathiafulvalene in nafion film as electron shuttle. Electrochima Acta, 1995. 40: p. 1845. 19.Furbee, J.W., Thomas, C.R., Kelly, R.S., and Malachowski, M.R., Mediated electrochemical reduction of cytochrome c and tyrosinase at perfluorosulfonated ionomer coated electrodes,. Analytical chemistry, 1993. 65: p. 1654. 20.Kong, J., R, N., Franklin, Zhou, C., Chapline, M.G., Peng, S., and Cho, K., Nanotube molecular wires as chemical sensors. Science, 2000. 287: p. 622-625. 21.Zhao, J.J., Buldum, A., Han, J., and Lu, P., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2000. 13(2): p. 195-200. 22.Grim, R.E., Clay Mineralogy 2nd ed. 1968, New York: McGraw-Hill 23.Strawn, D.G. and Sparks, D.L., The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite. Journal of Colloid Interface Science, 1999. 216: p. 257-269. 24.F, S., T, F.M., A, V., and L, G., Fate of herbicides influence by biotic and abiotic interaction. Chemoshere, 1999. 39(2): p. 333-341. 25.Kroto, H.W., J.R.Heath, S.C.O''Brien, R.F.Curl, and R.E.Smalley, C60:buckminsterfullerene. Nature, 1985. 318: p. 162-163. 26.Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56. 27.Odom, T.W., Huang, J.L., Kim, P., and Liebe, C.M., Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 2000. 104(13): p. 2794-2809. 28.Amelinckx, S., Electron diffraction and microscopy of nanotubes. Reports on progress in physics, 1999. 62(11): p. 1471-1524. 29.M.S.dresselhaus﹐, J. Mater. Res, 1998. 13: p. 2355. 30.Iijima, S. and T.Ichihashi, Pentagons heptagons and negative curvature in graphite microtubule growth. Nature, 1992. 356: p. 776-778. 31.Dekker, C., Carbon nanotubes as molecular quantum wires. Physics Today, 1999. 52: p. 22. 32.Treacy, M.M.J., Ebbsen, T.W., and M.Gibosn, J., Exceptionally high Young''s modulus observed for individual carbon nanotubes. Nature, 1996. 381: p. 678-680. 33.M.Ajayan, P. and Ebbesen, T.W., Nanometre-size tubes of carbon. Report on Progress Physics, 1997. 60: p. 1025. 34.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments. chapter 2. 35.Journet, C. and P.Bernier, Production of carbon nanotubes. Applied physics A: Materials scient and processing, 1998. 67(1): p. 1-9. 36.Yacaman, M.J., Yoshida, M.M., Rendon, L., and Saniesteban, J.G., Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett, 1993. 62(2): p. 202. 37.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett, 1995. 243(1-2): p. 49-54. 38.http://140.114.18.223/~hcshih/diamond/nanotube.html. 2000. 39.Davis, J.J., Coleman, K.S., Azamian, B.R., Bagshaw, C.B., and H.Green, M.L., Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry : a European journal, 2003. 9: p. 3732. 40.http://psroc.phys.ntu.edu.tw/bimonth/v28/704.pdf. 41.Storri, S., Santoni, T., Minunni, M., and Mascini, M., Surface modifications for the development of piezoimmunosensors. Biosensor and Bioelectron, 1998. 13: p. 347. 42.Uttenthaler, E., Kößlinger, C., and Drost, S., Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosensor and Bioelectron, 1998. 13: p. 1279. 43.Harteveld, J.L.N., Nieuwenhuizen, M.S., and Wils, E.R.J., Detection of staphylococcal enterotoxin B employing a piezoelectric crystal immunosensor. Biosensor and Bioelectron, 1997. 12: p. 661. 44.Yokoyama, K., Ikebukuro, K., Tamiya, E., Karube, I., Ichiki, N., and Arikawa, Y., Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Analytica Chimica Acta, 1995. 304: p. 139. 45.Clark, L.C., Lyons, C., and N.Y.Acad, A., Electrode system for continuous monitoring in cardiovascular surgery. Science, 1962. 102: p. 29. 46.Updike, S.J. and Hicks, G.P., The enzyme electrode. Nature(London), 1967. 214: p. 986-988. 47.Takahiko, K., Hiroko, I.K., and Yoshiyuki, O., Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system. Analytical Chemistry, 1994. 66: p. 1231. 48.Wang, J. and Angnes, L., Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Analytical Chemistry, 1992. 64: p. 456. 49.Sylvia, V.S., Raymond, J.P., and Alexander, M.Y., Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Analytical Chemistry, 1990. 62: p. 1111. 50.Hale, P.D., Boguslavsky, L.I., Inagaki, T., Karan, H.I., Lee, H.S., A.Skotheim, Y., and Okamoto, Y., Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Analytical Chemistry, 1991. 63: p. 677. 51.胡啟章, 電化學原理與方法. 2002, 台北市: 五南圖書出版股份有限公司. 52.Liu, S. and Ju, H., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003 19: p. 177-183.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3633-
dc.description.abstract本研究目的為製備奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極,並將電極應用於偵測過氧化氫。在pH=7 的磷酸緩衝溶液下,奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極的操作電壓為-0.6V。當過氧化氫累積濃度為12.8mM 時,奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極能產生較高的電流為136.87μA。且在掃描速率為25 到200mV/s,整個電催化過程為表面控制。 而奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極, 在含有8mg/ml 的 CNTs-Clay 量,和取6μl的CNTs-Clay/Nafion 溶液以及掃描速率為200rpm的最佳條件下,其靈敏度為10942 nA/mM,應答時間為5 秒,偵測範圍為0.1~12.8mM 的過氧化氫。 在葡萄糖偵測方面,當葡萄糖氧化酵素濃度為2mg/ml 時,靈敏度顯 示為1718nA/mM,線性範圍0.2~1.3mM,應答時間為10 秒,而葡萄糖濃度在2.8mM 時,應答電流為3.02μA。 關鍵字:生物感測器,黏土,奈米碳管zh_TW
dc.description.abstractThe preparation of biosensors based on the carbon nanotubes (CNTs)-Clay/Nafion coated on the thin film glassy carbon electrode (GCE) fordetecting the hydrogen peroxide (H2O2) was investigated. The CNTs-Clay/Nafion with a operating potential of -0.6 V in 0.1 M, pH 7.0 phosphate buffer solution. The superior performance of higher current of 136.87 μA with the accumulation of 12.8mM H2O2 was observed as the CNTs-Clay/Nafion modified glassy carbon electrode. The response has shown a surface-controlled electrocatalyze process determined in the scan rate range from 25 to 200 mV/s. Under the optimal conditions of 8mg/ml CNTs-Clay, 6μl CNTs-Clay/Nafion solution, pH 7.0 phosphate buffer solution and agitation speed of 200rpm, the sensitivity and response time of the CNTs-Clay/Nafion/GCE biosensor were 10942 nA/mM and 5 seconds,respectively, in the detecting range of 0.1~12.8mM H2O2 . The resulting sensor displays a high sensitivity (1718nA/mM) and a linear range from 0.2 to 1.3 mM, the response time was 10 seconds for glucose determination, the current of 3.02 μA with the accumulation of 2.8mM glucose. Key words: biosensors, clay, carbon nanotubesen_US
dc.description.tableofcontents摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章 前言 1 第二章 文獻回顧 2 (一) 生物感測器(Biosensor) 2 1. 生物感測器的工作原理 2 2. 生物感測器的組成 2 3. 生物感測器需具有的優點 3 (二) 電化學原理 5 1. 電化學分析 6 (三) 電化學式生物感測器 10 1. 電位式生物感測器(Potentiometric biosensors) 10 2. 電流式生物感測器 (Amperometric biosensors) 10 3. 電阻式生物感測器(Conductrometric biosensors) 11 (四) 化學修飾電極(Chemically Modified Electrodes,CMEs) 12 (五) 奈米材料修飾電極 15 1. 黏土(clay)之簡介 15 (六) 酵素電極 30 1. 葡萄糖氧化酵素之簡介 30 (七) 固定化技術 31 1. 酵素固定化之簡介 31 2. 電極表面之酵素固定法 32 第三章 材料與方法 36 (一) 實驗材料 36 (二) 藥品配製 36 (三) 實驗儀器 37 (四) 實驗步驟 38 (五) 實驗流程 42 第四章 結果與討論 44 (一) 製備Ni-Clay與CNTs-Clay的表面型態 44 1. 場發射掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM) 44 2. X光能量散佈分析儀(X-ray energy dispersive spectrometer,EDS) 46 (二) 不同薄膜修飾玻璃碳電極之表面型態分析 47 1. 場發射掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM) 47 (三) 奈米碳管-黏土/Nafion 薄膜修飾玻璃碳電極偵測過氧化氫 49 1. 循環伏安法 50 2. 安培伏安法 55 (四) CNTs-Clay/Nafion薄膜修飾玻璃碳電極之碳管含量的探討 62 (五) 攪拌速度對CNTs-Clay/Nafion修飾玻璃碳電極的探討 68 (六) 膜厚度對偵測過氧化氫的影響 74 (七) CNTs-Clay/Nafion/葡萄糖氧化酵素(GOD)薄膜修飾玻璃碳電極偵測葡萄糖之試驗 79 第五章 結論與研究方向 83 (一) 結論 83 (二) 研究方向 84 第六章 參考文獻 85zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200715565000en_US
dc.subjectbiosensorsen_US
dc.subject生物感測器zh_TW
dc.subjectclayen_US
dc.subjectcarbon nanotubesen_US
dc.subject黏土zh_TW
dc.subject奈米碳管zh_TW
dc.title鎳-黏土成長奈米碳管於電化學生物感測器之應用zh_TW
dc.titleApplications of carbon nanotubes synthesized over the Ni particles on clay for Electrochemical biosensoren_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.