Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3634
DC FieldValueLanguage
dc.contributor邱英明zh_TW
dc.contributor陳春榮zh_TW
dc.contributor張振榮zh_TW
dc.contributor蘇鴻麟zh_TW
dc.contributor.advisor徐善慧zh_TW
dc.contributor.author林哲永zh_TW
dc.contributor.authorLin, Zhe-Yongen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T05:32:20Z-
dc.date.available2014-06-06T05:32:20Z-
dc.identifierU0005-2008200713372700zh_TW
dc.identifier.citation1. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol (2000). 2. Belkas, J. S., Shoichet, M. S. & Midha, R. Peripheral nerve regeneration through guidance tubes. Neurol. Res. 26, 151-160 (2004). 3. Molander, H., Olsson, Y., Engkvist, O., Bowald, S. & Eriksson, I. Regeneration of peripheral nerve through a polyglactin tube. Muscle Nerve 5, 54-57 (1982). 4. Keeley, R. D., Nguyen, K. D., Stephanides, M. J., Padilla, J. & Rosen, J. M. The artificial nerve graft: a comparison of blended elastomer-hydrogel with polyglycolic acid conduits. J. Reconstr. Microsurg. 7, 93-100 (1991). 5. Rosen, J. M., Padilla, J. A., Nguyen, K. D., Siedman, J. & Pham, H. N. Artificial nerve graft using glycolide trimethylene carbonate as a nerve conduit filled with collagen compared to sutured autograft in a rat model. J. Rehabil. Res. Dev. 29, 1-12 (1992). 6. Ellis, D. L. & Yannas, I. V. Recent advances in tissue synthesis in vivo by use of collagen-glycosaminoglycan copolymers. Biomaterials 17, 291-299 (1996). 7. den Dunnen, W. F. et al. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts. Microsurgery 17, 348-357 (1996). 8. Matsumoto, K. et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 868, 315-328 (2000). 9. Mainil-Varlet, P. et al. Polylactide implants and bacterial contamination: an animal study. J. Biomed. Mater. Res. 54, 335-343 (2001). 10. Evans, G. R. et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 23, 841-848 (2002). 11. Jung, D. R. et al. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev. Biotechnol. 21, 111-154 (2001). 12. Matsuda, T. & Sugawara, T. Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces. J. Biomed. Mater. Res. 32, 165-173 (1996). 13. Thompson, D. M. & Buettner, H. M. Schwann cell response to micropatterned laminin surfaces. Tissue Eng 7, 247-265 (2001). 14. Yoshinari, M., Matsuzaka, K., Inoue, T., Oda, Y. & Shimono, M. Effects of multigrooved surfaces on fibroblast behavior. J. Biomed. Mater. Res. A 65, 359-368 (2003). 15. Hsu, S. H., Chen, C. Y., Lu, P. S., Lai, C. S. & Chen, C. J. Oriented Schwann cell growth on microgrooved surfaces. Biotechnol Bioeng 92(5). 2005. (1905). 16. Mott-Smith, H. M. & Langmuir, I. The Theory of Collectors in Gaseous Discharges. Phys. Rev. 28, 727-763 (1926). 17. Mar, M. N., Ratner, B. D. & Yee, S. S. An intrinsically protein-resistant surface plasmon resonance biosensor based upon a RF-plasma-deposited thin film. Sensors and Actuators B: Chemical 125-131 (1999). 18. Steuber, F., Staudigel, J. & Simmerer, J. Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode. Physics Letters 74, 3558-3660 (1999). 19. Huang, M., Yang, M. & Leng, X. Y. Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology 186, 218-226 (2004). 20. Ihara, T., Miyoshi, M., Ando, M. & Sugihara, S. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. Journal of Materials Science 36, 4201-4207 (2001). 21. Kim, H. Y. & Yasuda, H. K. Improvement of fatigue properties of poly(methyl methacrylate) bone cement by means of plasma surface treatment of fillers. Journal of Biomedical Materials Research 48, 135-142 (1999). 22. Hegemann, D., Brunner, H. & Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208, 286 (2003). 23. Roth, J. R., Tsai, P. P. & Larry, C. Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure. Patent number: 5403453 U. S. (1995). 24. Aronsson, B. O., Lausmaa, J. & Kasemo, B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. Journal of Biomedical Materials Research 35, 49-73 (1998). 25. Vleggeert-Lankamp, C. L. et al. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials 25(14). (2004). 26. Strain, A. J., McGuinness, G., Rubin, J. S. & Aaronson, S. A. Keratinocyte growth factor and fibroblast growth factor action on DNA synthesis in rat and human hepatocytes: modulation by heparin. Exp. Cell Res. 210, 253-259 (1994). 27. Myers, R. L., Chedid, M., Tronick, S. R. & Chiu, I. M. Different fibroblast growth factor 1 (FGF-1) transcripts in neural tissues, glioblastomas and kidney carcinoma cell lines. Oncogene. 11, 785-789 (1995). 28. Zhu, X., Sasse, J., McAllister, D. & Lough, J. Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev. Dyn. 207, 429-438 (1996). 29. Schumacher, B., Pecher, P., von Specht, B. U. & Stegmann, T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97, 645-650 (1998). 30. Cuevas, P. et al. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 15, 29-40 (1997). 31. Bloch, J., Fine, E. G., Bouche, N., Zurn, A. D. & Aebischer, P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 172, (2001). 32. Chen, H., Ouyang, W., Lawuyi, B., Martoni, C. & Prakash, S. Reaction of chitosan with genipin and its fluorogenic attributes for potential microcapsule membrane characterization. J Biomed. Mater. Res. A 75, 917-927 (2005). 33. Alfred, G. Cold Plasma in Materials Fabrications. IEEE Press, New York 151-153 (1993). 34. Chapman, B. Glow Discharge process-Suputtering and Plasma Ething. John Wiley&Sons (1980). 35. Yuan, Y., Zhang, P., Yang, Y., Wang, X. & Gu, X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18). (2004). 36. Kim, T. S., Stiehl, J. D., Reeves, C. T., Meyer, R. J. & Mullins, C. B. Cryogenic CO oxidation on TiO(2)-supported gold nanoclusters precovered with atomic oxygen. J Am Chem Soc 125, 2018-2019 (2003). 37. Lin, Y. L., Jen, J. C., Hsu, S. & Chiu, I. M. Sciatic nerve repair by microgrooved nerve conduit made of chitosan-gold nanocomposites. Surgical Neurology Submitted, (2007). 38. Dillon, G. P., Yu, X., Sridharan, A., Ranieri, J. P. & Bellamkonda, R. V. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed 9(10). (1998). 39. 蘇千香 微溝槽聚乳酸導管在周邊神經再生的應Microgrooved polylactide conduits for peripheral nerve regeneration.中興大學化學工程研究所碩士論文 (2006). 40. Chen, H., Ouyang, W., Lawuyi, B., Lim, T. & Prakash, S. A new method for microcapsule characterization: use of fluorogenic genipin to characterize polymeric microcapsule membranes. Appl. Biochem. Biotechnol. 134, 207-222 (2006).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3634-
dc.description.abstract本研究以生物可降解材料聚乳酸(PLA)做為基材,以微影製程之模板拓印出具方向性溝槽表面的聚乳酸膜材,利用大氣電漿裝置改質具微溝槽聚乳酸表面,以具生物相容性之幾丁聚醣及納米金-混幾丁聚醣做為表面修飾分子,並利用纖維母細胞生長因子接枝於納米金-混幾丁聚醣表面,之後以掃描式電子顯微鏡、化學分析電子光譜儀等表面分析評估改質結果。研究發現,聚乳酸經大氣電漿改質接上幾丁聚醣及納米金-混幾丁聚醣後,化學分析電子光譜及掃描式電子顯微鏡皆可明顯觀察到微溝槽表面的幾丁聚醣及納米金-混幾丁聚醣分子。此外,小鼠神經幹細胞生長增加且細胞排序程度在72小時由原本84.3%提升至89.5%。此外,大氣電漿修飾納米金-混幾丁聚醣的表面後更能增加生長因子的吸附量及提升基因表現,故大氣電漿為一有潛力之生醫材料表面改質方法。zh_TW
dc.description.abstractIn this study the bridgeable polylactide (PLA) substrate was fabricated with instructive microgrooves first, and then grafted with chitosan-Au nanocomposites (chi-Au) and fibroblast growth factor 1 (FGF1) by atmosphere air plasma treatment to modify the hydrophobic surface. The surface properties of modified substrates were characterized by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA). The results showed that the presence of chitosan and chi-Au were demonstrated on PLA surface by SEM and ESCA after atmosphere air plasma treatment. For in vitro studies, the degree of cell alignment and the proliferation of murine neural stem cells were evaluated. It was shown that the cell proliferation was significantly higher on the modified surface and the degree of cell alignment also increased from 84.3% to 89.5% at 72 hours. Furthermore, greater levels of gene expression for BDNF, GDNF and FGF1 and more FGF1 were absorbed on the air plasma modified chi-Au substrate. It is concluded from this study that the use of air plasma was a potential technique for surface modification of biomaterials.en_US
dc.description.tableofcontents目錄 摘要.............................................................................................................i Abstract .....................................................................................................ii 目錄 .........................................................................................................iii 圖表目錄 ................................................................................................vii 第一章 文獻回顧.......................................................................1 1-1 神經系統............................................................................................1 1-1-1 中樞神經系統(Central Nervous System, CNS).............................1 1-1-2 周邊神經系統(Peripheral Nervous System, PNS).........................1 1-2 周邊神經損傷與修復........................................................................2 1-3 生醫材料結合組織工程....................................................................3 1-4 微構形(Micropattern)細胞培養.........................................................5 1-5 電漿表面改質.....................................................................................7 1-5-1 電漿原理.........................................................................................7 1-5-2 電漿技術與應用.............................................................................7 1-5-3 大氣電漿應用.................................................................................8 1-5-4 電漿於生醫材料應用.....................................................................9 1-6 奈米金(Goldnanoparticles)...............................................................10 1-7 添加生長及滋養因子.......................................................................11 1-8 研究目的...........................................................................................14 第二章 實驗方法、藥品與儀器..............................................16 2-1 實驗流程...........................................................................................16 2-1-1 大氣電漿改質聚乳酸表面並接枝幾丁聚醣...............................16 2-1-2 大氣電漿改質具微溝槽聚乳酸表面接枝混奈米金-幾丁 聚醣及吸附生長因子..............................................................................17 2-2 材料製備...........................................................................................18 2-2-1 Poly(dimethylsiloxane)副母模(submaster)製作............................18 2-2-2 聚乳酸、幾丁聚醣以及幾丁聚醣-奈米金複合材料(PLA, chitoasn and chitoasn goldnanocomposites)之溶液製備.........................18 2-3 材料表面結構觀察...........................................................................21 2-3-1 光學顯微鏡觀察...........................................................................21 2-3-2 原子力顯微鏡(AFM)觀察............................................................21 2-3-3 掃描式電子顯微鏡(SEM)觀察....................................................22 2-4 材料表面改質..................................................................................22 2-4-1 PLA電漿表面改質........................................................................22 2-5 材料表面結構觀察..........................................................................23 2-5-1 原子力顯微鏡(Atomic force microscope, AFM)觀察..................24 2-5-2 材料接觸角(Contact angle)測量...................................................24 2-5-3 衰減式全反射紅外光譜儀ATR-FTIR分析.................................24 2-5-4 梔子素(genipin)染色分析.............................................................25 2-5-5 化學分析電子光譜儀成分(ESCA)分析......................................25 2-5-6 生長因子(FGF1)吸附與脫附分析...............................................26 2-6 細胞培養..........................................................................................26 2-6-1 細胞來源.......................................................................................26 2-6-2 NSCs細胞生長曲線測定...............................................................27 2-6-3 NSCs在材料表面生長形態觀察)..................................................28 2-7 細胞排序實驗與排序角度分析.......................................................28 2-7-1 微溝槽PLA材料對神經幹細胞排序程度影響............................28 2.8 神經幹細胞生化功能測試...............................................................30 第三章 實驗結果.....................................................................34 3-1 大氣電漿改質聚乳酸模材表面之探討...........................................34 3-1-1 改質後聚乳酸模材表面型態觀察...............................................34 3-1-2 改質後聚乳酸模材上細胞型態及生長曲線測試.......................36 3-2 改質具微溝槽表面之聚乳酸並接枝幾丁聚醣及奈米金- 混幾丁聚醣(Chitoasn and chitoasn-gold )之製備與表面型態觀察…...36 3-3 接枝生長因子(FGF1)於奈米金-混幾丁聚醣材料表面之製備.....37 3-3-1 生長因子接枝於幾丁聚醣-奈米金複合材料之表面元素量測..37 3-2-2 FGF1於材料表面之吸附情形.......................................................37 3-3-3 FGF1於材料表面之釋放...............................................................37 3-4 神經幹細胞(NSCs)在材料上生長功能測試...................................38 3-4-1 NSCs於改質後具微溝槽聚乳酸表面上生長曲線.......................38 3-4-2 NSCs在微溝槽表面上的排序程度測試.......................................38 3-4-3 NSCs在不同材料表面上的基因表現值.......................................38 第四章 結果討論.....................................................................40 第五章 結論.............................................................................47 Reference List............................................................................69 圖表目錄 Table 1 利用不同生醫材料修復動物神經組織圖..................................4 Table 2 電漿表面處理技術在各種生醫材料領域應用........................10 Table 3 大鼠相關基因primer序列圖.....................................................33 Table 4 大氣電漿處理材料表面之元素分析(ESCA)圖.......................54 Table 5 改質材料表面元素分析(ESCA)圖...........................................60 Figure 1 斷裂神經以神經鞘管協助再生示意圖….................................3 Figure 2 電漿於各種領域之應用圖.........................................................8 Figure 3 真空電漿製程於工業界之限制圖.............................................9 Figure 4 晶片表面示意圖.......................................................................18 Figure 5 微溝槽表面PLA製備流程圖...................................................21 Figure 6 電漿改質裝備圖.......................................................................23 Figure 7 細胞排序角度統計圖...............................................................30 Figure 8 大氣電漿處理後聚乳酸表面之接觸角圖...............................48 Figure 9 幾丁聚醣接枝於聚乳酸表面之接觸角圖...............................49 Figure 10 衰減式全反射紅外光譜儀之觀察圖.....................................50 Figure 11 聚乳酸及幾丁聚醣材料之官能基圖.....................................50 Figure 12 由ATR/IR圖作半定量分析幾丁聚醣分子接枝厚度............51 Figure 13 大氣電漿處理聚乳酸表面之表面型態(AFM)圖.................52 Figure 14 梔子素(genipin)染色分析圖..................................................53 Figure 15 ESCA之C元素細微的波峰變化圖.........................................55 Figure 16 Actin及DAPI之螢光染色觀察C6細胞骨架圖.......................56 Figure 17 C6細胞之生長圖.....................................................................57 Figure 18 微溝槽表面之電子顯微鏡(SEM)觀察圖..............................58 Figure 19 大氣電漿接枝聚乳酸表面之表面型態(AFM)圖.................59 Figure 20 神經幹細胞在不同材料上細胞計數圖.................................61 Figure 21 神經幹細胞在不同材料上的MTT圖....................................62 Figure 22 大氣電漿改質後神經幹細胞之排序情形圖.........................63 Figure 23 接枝生長因子後神經幹細胞之排序情形圖.........................64 Figure 24 不同電漿速度處理材料表面吸附生長因子量圖.................65 Figure 25 生長因子在材料表面隨時間釋放圖.....................................66 Figure 26 神經幹細胞第一天在材料上基因表現.................................67 Figure 27 神經幹細胞第三天在材料上基因表現.................................68zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200713372700en_US
dc.subjectAir plasmaen_US
dc.subject接枝zh_TW
dc.subjectgrafingen_US
dc.subjectmicrogrooveen_US
dc.subjectgold nanocompositeen_US
dc.subjectchitosanen_US
dc.subjectPLAen_US
dc.subjectfibroblastic cell growth factor 1en_US
dc.subject微溝槽zh_TW
dc.subject納米金幾丁聚醣zh_TW
dc.subject聚乳酸zh_TW
dc.subject生長因子zh_TW
dc.title大氣電漿改質神經導管材料於周邊神經之應用zh_TW
dc.titleThe application of nerve conduits materials modified by atmospheric plasma treatmenten_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.