Please use this identifier to cite or link to this item:
標題: 以無機薄膜為基材製備吸附性薄膜及其在生物分離之應用
Preparation of adsorptive membranes via modification of inorganic membranes and their applications in bioseparation
作者: 張肇栓
Chang, Chao-Shuan
關鍵字: inorganic membranes
adsorptive membranes
出版社: 化學工程學系所
引用: [1] D.K. Roper, and E.N. Lightfoot, Separation of biomolecules using adsorptive membranes, J. Chromatogr. A 702 (1995) 3. [2] E. Klein, Affinity membranes: a 10-year review, J. Membr. Sci. 179 (2000) 1. [3] H. Zou, Q. Luo, and D. Zhou, Affinity membrane chromatography for the analysis and purification of proteins, J. Biochem. Biophys. Methods 49 (2001) 199. [4] R. Ghosh, Protein separation using membrane chromatography: Opportunities and challenges, J. Chromatogr. A 952 (2002) 13. [5] N. Vanhuynh, J.C. Motte, J.F. Pilette, M. Decleire, and C. Colson, Sequential elution of denatured proteins, hydrolyzed RNA, and plasmid DNA of bacterial lysates adsorbed onto stacked DEAE-cellulose membranes, Anal. Biochem. 211 (1993) 61. [6] R. Giovannini, R. Freitag, and T.B. Tennikova, High-performance membrane chromatography of supercoiled plasmid DNA, Anal. Chem. 70 (1998) 3348. [7] A.G. Grunwald, and M.S. Shields, Plasmid purification using membrane-based anion-exchange chromatography, Anal. Biochem. 296 (2001) 138. [8] H.N. Endres, J.A.C. Johnson, C.A. Ross, J.K. Welp, and M.R. Etzel, Evaluation of an ion-exchange membrane for the purification of plasmid DNA, Biotechnol. Appl. Biochem. 37 (2003) 259. [9] M.A. Teeters, S.E. Conrardy, B.L. Thomas, T.W. Root, and E.N. Lightfoot, Adsorptive membrane chromatography for purification of plasmid DNA, J. Chromatogr. A 989 (2003) 165. [10] S. Zhang, A. Krivosheyeva, and S. Nochumson, Large-scale capture and partial purification of plasmid DNA using anion-exchange membrane capsules, Biotechnol. Appl. Biochem. 37 (2003), 245. [11] M.A. Teeters, T.W. Root, and E.N. Lightfoot, Adsorption and desorption behavior of plasmid DNA on ion-exchange membranes. Effect of salt valence and compaction agents, J. Chromatogr. A 1036 (2004) 73. [12] C. Haber, J. Skupsky, A. Lee, and R. Lander, Membrane chromatography of DNA: conformation-induced capacity and selectivity. Biotechnol. Bioeng. 88 (2004) 26. [13] R. Ma. Montesinos-Cisneros, J. Ortega, R. Guzman, and A. Tejeda-Mansir, Breakthrough performance of linear-DNA on ion-exchange membrane columns. Bioprocess Biosyst. Eng. 29 (2006) 91. [14] R. Ma. Montesinos-Cisneros, J. de la Vega Olivas, J. Ortega, R. Guzman, and A. Tejeda-Mansir, Breakthrough performance of plasmid DNA on ion-exchange membrane columns. Biotechnol. Prog. 23 (2007) 881. [15] P.-O. Syren, A. Rozkov, S.R. Schmidt, and P. Stromberg, Milligram scale parallel purification of plasmid DNA using anion-exchange membrane capsules and a multi-channel peristaltic pump. J. Chromatogr. B 856 (2007) 68. [16] H. Cheng, K. Scott, K.V. Lovell, J.A. Horsfall, and S.C. Waring, Evaluation of new ion exchange membranes for direct borohydride fuel cells, J. Membr. Sci. 288 (2007) 168. [17] C. Zhao, H. Lin, K. Shao, X. Li, H. Ni, Z. Wang, and H. Na, Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, J. Power Sources 162 (2006) 1003. [18] Oehmen, R. Viegas, S. Velizarov, M.A.M. Reis, and J.G. Crespo, Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor, Desalination 199 (2006) 405. [19] M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur, and S.S. Kulkarni, Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications, Desalination 197 (2006) 225. [20] S.-Y. Lin, and S.-Y. Suen, Protein separation using plate-and-frame modules with ion-exchange membranes, J. Membr. Sci. 204 (2002) 37. [21] U. Reichert, T. Linden, G. Belfort, M.-R. Kula, and J. Thömmes, Visualising protein adsorption to ion-exchange membranes by confocal microscopy, J. Membr. Sci. 199 (2002) 161. [22] C.S. Rao, Purification of large proteins using ion-exchange membranes, Process Biochem. 37 (2001) 247. [23] M. Marquet, N.A. Horn, and J.A. Meek, Process development for the manufacture of plasmid DNA vectors for use in gene therapy, BioPharm. 8 (1995) 26. [24] D.M.F. Prazeres, T. Schluep, and C. Cooney, Preparative purification of supercoiled plasmid DNA using anion-exchange chromatography, J. Chromatogr. A 806 (1998) 31. [25] G.N.M Ferreira, J.M.S. Cabral, and D.M.F. Prazeres, Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications, Biotechnol. Prog. 15 (1999) 725. [26] M.M. Diogo, J.A. Queiroz, and D.M.F. Prazeres, Chromatography of plasmid DNA, J. Chromatogr. A 1069 (2005) 3. [27] W.-C. Tseng, F.-L. Ho, T.-Y. Fang, and S.-Y. Suen, Effect of alcohol on purification of plasmid DNA using ion-exchange membrane, J. Membr. Sci. 233 (2004) 161. [28] C. Wu, T. Xu, and W. Yang, Fundamental studies of a new hybrid (inorganic-organic) positively charged membrane: membrane preparation and characterizations, J. Membr. Sci. 216 (2003) 269. [29] C. Wu, T. Xu, and W. Yang, A new inorganic-organic negatively charged membrane: membrane preparation and characterizations, J. Membr. Sci. 224 (2003) 117. [30] C. Wu, T. Xu, and W. Yang, Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials: effect of molecular weight of sol-gel precursor, J. Solid State Chem. 177 (2004) 1660. [31] C. Wu, T. Xu, M. Gong, and W. Yang, Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials. Part II. Membrane preparation and characterizations, J. Membr. Sci. 247 (2005) 111. [32] R. Suedee, T. Srichana, T. Chuchome, and U. Kongmark, Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water, J. Chromatogr. B 811 (2004) 191. [33] P. Wils, V. Escriou, A. Warnery, F. Lacroix, D. Lagneaux, M. Ollivier, J. Crouzet, J.F. Mayaux, and D. Scherman, Efficient purification of plasmid DNA for gene transfer using triple-helix affinity chromatography, Gene Ther. 4 (1997) 323. [34] S. Govender, E.P. Jacobs, M.W. Bredenkamp, and P. Swart, Affinity chromatography using biocompatible and reusable biotinylated membranes, J. Chromatogr. B 859 (2007) 1. [35] H.-L. Nie, T.-X. Chen, and L.-M. Zhu, Adsorption of papain on dye affinity membranes: Isotherm, kinetic, and thermodynamic analysis, Sep. Purif. Technol. 57 (2007) 121. [36] F.J. Wolman, D.G. Maglio, M. Grasselli, and O. Cascone, One-step lactoferrin purification from bovine whey and colostrum by affinity membrane chromatography, J. Membr. Sci. 288 (2007) 132. [37] C.J.M. Nova, D. Paolucci-Jeanjean, M. Barboiu, M.-P. Belleville, M. Rivallin, and G. Rios, Affinity membrane chromatography with a hybrid chitosan/ceramic membrane, Desalination 200 (2006) 470. [38] C. Boi, R. Facchini, M. Sorci, and G. C. Sarti, Characterisation of affinity membranes for IgG separation, Desalination 199 (2006) 544. [39] F. Xi, J. Wu, and X. Lin, Novel nylon-supported organic-inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent, J. Chromatogr. A 1125 (2006) 38. [40] C. Boi, F. Cattoli, R. Facchini, M. Sorci, and G.C. Sarti, Adsorption of lectins on affinity membranes, J. Membr. Sci. 273 (2006) 12. [41] M.Y. Arıca, M. Yılmaz, E. Yalçın, and G. Bayramoğlu, Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification, J. Chromatogr. B 805 (2004) 315. [42] M. Kim, K. Saito, and S. Furusaki, Adsorption and elution of Bovine r-globulin using an affinity membrane containing hydrophobic amino acids as ligands, J. Chromatogr. 585 (1991) 45. [43] S.-Y. Suen, Y.-C. Liu, and C.-S. Chang, Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species, J. Chromatogr. B 797 (2003) 305. [44] T.B. Tennikova, M. Bleha, and F. Švec, High-performance membrane chromatography of proteins, a novel method of protein separation, J. Chromatogr. 555 (1991) 97. [45] T.B. Tennikova, and F. Švec, High-performance membrane chromatography: highly efficient separation method for proteins in ion-exchange, hydrophobic interaction and reversed-phase modes, J. Chromatogr. 646 (1993) 279. [46] J. Luksa, V. Menart, S. Milicic, and B. Kus, Purification of human tumour necrosis factor by membrane chromatography, J. Chromatogr. A 661 (1994) 161. [47] Q.C. Wang, F. Švec, and J.M.J. Fréchet, Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene), J. Chromatogr. A 669 (1994) 230. [48] N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, and T. Sugo, Preparation of a hydrophobic membrane containing phenyl groups and its adsorption performance, J. Chromatogr. A 718 (1995) 27. [49] N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, and T. Sugo, Repeated use of a hydrophobic ligand-containing porous membrane for protein recovery, J. Membr. Sci. 134 (1997) 67. [50] S. Xie, F. Švec, and J.M.J. Fréchet, Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins, J. Chromatogr. A 775 (1997) 65. [51] A. Podgornik, M. Barut, J. JanČar, and A. Štrancar, High-performance membrane chromatography of small molecules, Anal. Chem. 71 (1999) 2986. [52] M.Y. Arıca, G.A. Öktem, and A. Denizli, Novel hydrophobic ligand-containing hydrogel membrane matrix: preparation and application to r-globulins adsorption. Colloids Surf. B 21 (2001) 273. [53] R. Ghosh, Separation of protein using hydrophobic interaction membrane chromatography, J. Chromatogr. A 9232 (2001) 59. [54] G. Bayramoğlu, A. Denizli, and M.Y. Arıca, Membrane with incorporated hydrophobic ligand for hydrophobic interaction with proteins: application to lipase adsorption, Polym. Int. 51 (2002) 966. [55] Y. Coffınier, C. Legallis, and M.A. Vijayalakshmi, Separation of IgG from human plasma using thiophilic hollow fiber membranes, J. Membr. Sci. 208 (2002) 13. [56] M.M. Diogo, J.A. Queiroz, G.A. Monteiro, S.A.M. Martins, G.N.M. Ferreira, and D.M.F. Prazeres, Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography, Biotechnol. Bioeng. 68 (2000) 576. [57] M.M. Diogo, J.A. Queiroz, and D.M.F. Prazeres, Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography, J. Chromatogr. A 998 (2003) 109. [58] M.P. Weiner, T.W. Thannhauser, J.H. Laity, M.E. Benning, D.P. Lee, and H.A. Scheraga, Plasmid purification using reverse-phase high performance liquid chromatography resin PRP-∞, Nucleic Acids Res. 16 (1988) 8185. [59] S. Michasels, Membrane, membrane processes, and their application: needs, unsolved problems, and challenges of the 1990's, Desalination 77 (1990) 5. [60] R.G. Nuzzo, F.A. Fusco, and D.L. Allara, Spontaneously organized molecular assemblies, 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces, J. Am. Chem. Soc. 109 (1987) 2358. [61] E.B. Troughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, and M.D. Poter, Monolayer films prepared by the spontaneous self-assembly of symmetrical dialkyl sulfides from solution onto gold substrates: Structure, properties, and reactivity of constituent functional group, Langmuir 4 (1988) 365. [62] R.G. Nuzzo, L.H. Dobois, and D.L. Allara, Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers, J. Am. Chem. Soc. 112 (1990) 558. [63] L.Li, S. Chen, and S. Jiang, Protein adsorption on alkanethiolate self-assembled monolayers: Nanoscale surface structural and chemical effects, Langmuir 19 (2003) 2974. [64] J. Sagiv, Organized monolayers by adsorption. 1. formation and structure of oleophobic mixed monolayers on solid surfaces, J. Am. Chem. Soc. 102 (1980) 92. [65] R. Maoz, J. Sagiv, D. Degenhardt, H. Möhwald, and P. Quint, Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infrared spectroscopy and X-ray scattering techniques, Supramol. Sci. 2 (1995) 9. [66] M.J. Stevens, Thoughts on the structure of alkylsilane monolayers, Langmuir 15 (1999) 2773. [67] D.L. Allara, and R.G. Nuzzo, Spontaneously organized molecular assemblies. 1. Formation, dynamics and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface, Langmuir 1 (1985) 45. [68] D.L. Allara, and R.G. Nuzzo, Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface, Langmuir 1 (1985) 52. [69] K. Ikegami, S. Kuroda, M. Sugi, M. Satio, S. Iizima, T. Nakamura, M. Matsumoto, and Y. Kawabata, ESR study on LB films of TMTTF-octadecylTCNQ, Synth. Met. 19 (1987) 669. [70] Y.-T. Tao, Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum, J. Am. Chem. Soc. 115 (1993) 4350. [71] Y.-T. Tao, G.D. Hietpas, and D.L. Allara, HCl vapor-induced structural rearrangements of n-alkanate self-assembled monolayers on ambient silver, copper, and aluminum surfaces, J. Am. Chem. Soc. 118 (1996) 6724. [72] T. Risse, T. Hill, J. Schmidt, G. Abend, H. Hamann, and H.-J. Freund, Investigation of the molecular motion of self-assembled fatty acid films, J. Phys. Chem. B 102 (1998) 2668. [73] F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci. 65 (2000) 151. [74] I. Lee, and R.P. Wool, Controlling amine receptor group density on aluminum oxide surfaces by mixed silane self-assembly, Thin Solid Films 379 (2000) 94. [75] K. Öberg, P. Persson, A. Shchukarev, and B. Eliasson, Comparison of monolayer films of steric acid and methyl state on an Al2O3 surface, Thin Solid Films 397 (2001) 102. [76] M.E. Karaman, D.A. Antelmi, and R.M. Pashley, The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates, Colloids Surf. A 182 (2001) 285. [77] N.E. Schlotter, D.L. Allara, M.D. Poter, and T.B. Bright, Formation and structure of a spontaneously absorbed monolayer of arachidic acid on silver, Chem. Phys. Lett. 132 (1986) 93. [78] R. Lahijani, G. Hulley, G. Soriano, N.A. Horn, and M. Marquet, High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation, Hum. Gene Ther. 7 (1996) 1971. [79] W. Chen, C. Graham, and R.B. Ciccarelli, Automated fed-batch fermentation with feedback controls based on dissolved oxygen (DO) and pH for production of DNA vaccines, J. Ind. Microbiol. Biotechnol.18 (1997) 43. [80] J.M. Polo, and T.W. Dubensky, Jr., Virus-based vectors for human vaccine applications, Drug Discov. Today 7 (2002) 719. [81] J.W. Shiver, and E.A. Emini, Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors, Annu. Rev. Med. 55 (2004) 355. [82] P. Mayer-Kuckuk, D. Banerjee, N. Kemeny, Y. Fong, and J.R. Bertino, Molecular therapies for colorectal cancer metastatic to the liver, Mol. Ther. 5 (2002) 492. [83] D.E. Post, F.R. Khuri, J.W. Simons, and E.G. van Meir, Replicative oncolytic adenoviruses in multimodal cancer regimens, Hum. Gene. Ther. 14 (2003) 933. [84] L.J. Patterson, N. Malkevitch, J. Pinczewski, D. Venzon, Y. Lou, B. Peng, C. Munch, M. Leonard, E. Richardson, K. Aldrich, V.S. Kalyanaraman, G.N. Pavlakis, and M. Robert-Guroff, Potent, persistent induction and modulation of cellular immune responses in rhesus macaques primed with Ad5hr-simian immunodeficiency virus (SIV) env/rev, gag, and/or nef vaccines and boosted with SIV gp120, J. Virol. 77 (2003) 8607. [85] M.M. Gottesman, Cancer gene therapy: an awkward adolescence, Cancer Gene Ther. 10 (2003) 501. [86] Z.-Y. Yang, L.S. Wyatt, W.-P. Kong, Z. Moodie, B. Moss, and G.J. Nabel, Overcoming immunity to a viral vaccine by DNA priming before vector boosting, J. Virol. 77 (2003) 799. [87] J.W. Shiver, T.-M. Fu, L. Chen, D.R. Casimiro, M.-E. Davies, R.K. Evans, Z.-Q. Zhang, A.J. Simon, W.L. Trigona, S.A. Dubey, L. Huang, V.A. Harris, R.S. Long, X. Liang, L. Handt, W.A. Schleif, L. Zhu, D.C. Freed, N.V. Persaud, L. Guan, K.S. Punt, A. Tang, M. Chen, K.A. Wilson, K.B. Collins, G.J. Heidecker, V.R. Fernandez, H.C. Perry, J.G. Joyce, K.M. Grimm, J.C. Cook, P.M. Keller, D.S. Kresock, H. Mach, R.D. Troutman, L.A. Isopi, D.M. Williams, Z. Xu, K.E. Bohannon, D.B. Volkin, D.C. Montefiori, A. Miura, G.R. Krivulka, M.A. Lifton, M.J. Kuroda, J.E. Schmitz, N.L. Letvin, M.J. Caulfield, A.J. Bett, R. Youil, D.C. Kaslow, and E.A. Emini, Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature 415 (2002) 331. [88] L.J. Patterson, N. Malkevitch, D. Venzon, J. Pinczewski, V.R. Gomez-Roman, L. Wang, V.S. Kalyanaraman, P.D. Markham, F.A. Robey, and M. Robert-Guroff, Protection against mucosal simian immunodeficiency virus SIVmac251 challenge by using replicating adenovirus-SIV multigene vaccine priming and subunit boosting, J. Virol. 78 (2004) 2212. [89] N.A. Horn, J.A. Meek, G. Budahazi, and M. Marquet, Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials, Hum. Gene Ther. 6 (1995) 565. [90] G.N.M Ferreira, J.M.S. Cabral, and D.M.F. Prazeres, A comparison of gel filtration chromatographic supports for plasmid purification, Biotechnol. Tech. 11 (1997) 417. [91] A. Ljunglof, P. Bergvall, R. Bhikhabhai, and R. Hjorth, Direct visualisation of plasmid DNA in individual chromatography adsorbent particles by confocal scanning laser microscopy. J. Chromatogr. A 844 (1999) 129. [92] P.M. Boyer, and J.T. Hsu, Effects of ligand concentration on protein adsorption in dye-ligand adsorbents, Chem. Eng. Sci. 47 (1992) 241. [93] D.R. Lu, and K. Park, Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen, J Colloid Interface Sci. 144 (1991) 271. [94] I.-F. Su, L.-J. Chen, and S.-Y. Suen, Adsorption separation of terpene lactones from Ginkgo biloba L. extract using glass fiber membranes modified with octadecyltrichlorosilane, J. Sep. Sci. 28 (2005) 1211. [95] C.-S. Chang, and S.-Y. Suen, Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption, J. Membr. Sci. 275 (2006) 70. [96] J. McMurry, Organic Chemistry, 4th ed., Brooks/Cole, Pacific Grove, CA, USA, 1996, pp. 946-972. [97] S.B. Humphrey, T.B. Stanton, and N.S. Jensen, Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens, FEMS Microbiol. Lett. 134 (1995) 97. [98] H. Shindo, H. Torigoe, and A. Sarai, Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay, Biochemistry 32 (1993) 8963. [99] S.-Y. Suen, An isotherm model describing concave-down Scatchard curve for heterogeneous affinity adsorption, J. Chem. Technol. Biotechnol. 70 (1997) 278. [100] S. Sharma1, and G.P. Agarwal, Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models, Anal. Biochem. 288 (2001) 126. [101] J. Wen, T. Arakawa, and J.S. Philo, Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions, Anal. Biochem. 240 (1996) 155. [102] S.-Y. Suen, and Y.-S. Chang, Adsorption and desorption of lysozyme and albumin to Cibacron blue 3GA using gel beads and membrane discs, J. Chin. Inst. Chem. Engrs. 29 (1998) 239. [103] W.-Y. Chen, H.-M. Huang, C.-C. Lin, F.-Y. Lin, and Y.-C. Chan, Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: Studies by isothermal titration calorimetry and the van't Hoff equation, Langmuir 19 (2003) 9395. [104] S.-Y. Suen, and M.R. Etzel, Sorption Kinetics and breakthrough curves for pepsin and chymosin using pepstatin A Affinity Membranes, J. Chromatogr. A 686 (1994) 179. [105] S. Tayyab, N. Sharma, and M.M. Khan, Use of domain specific ligands to study urea-induced unfolding of bovine serum albumin, Biochem. Biophys. Res. Commun. 277 (2000) 83. [106] S. Tayyab, B. Ahmad, Y. Kumar, and M.M. Khan, Salt-induced refolding in different domains of partially folded bovine serum albumin, Int. J. Biol. Macromol. 30 (2002) 17. [107] J.-K. Fang, H.-C. Chiu, J.-Y. Wu, and S.-Y. Suen, Preparation of polysulfone-based cation-exchange membranes and their application in protein separation with a plate-and-frame module, React. Funct. Polym. 59 (2004) 171. [108] J.A. Huberman, Importance of measuring nucleic acid absorbance at 240 nm as well as at 260 and 280 nm, BioTechniques 18 (1995) 636. [109] D.M.F. Prazeres, G.N.M. Ferreira, G.A. Monteiro, C.L. Cooney, and J.M.S. Cabral, Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks, Trends Biotechnol. 17 (1999) 169. [110] T.C. Boles, J.H. White, and N.R. Cozzarelli, Structure of plectonemically supercoiled DNA, J. Mol. Biol. 213 (1990) 931. [111] A.V. Vologodskii, S.D. Levene, K.V. Klenin, M. Frank-Kamenetskii, and N.R. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA, J. Mol. Biol. 227 (1992) 1224. [112] A. Jungbauer, Insights into the chromatography of proteins provided by mathematical modeling, Curr. Opin. Biotechnol. 7 (1996) 210. [113] J. Stadler, R. Lemmens, and T. Nyhammar, Plasmid DNA purification, J. Gene Med. 6 (2004) S54. [114] H.C. Birnboim, and J. Doly, A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7 (1979) 1513. [115] J.K. McClung, and R.A. Gonzales, Purification of plasmid DNA by fast protein liquid chromatography on Superose 6 preparative grade. Anal. Biochem. 177 (1989) 378. [116] G. Chandra, P. Patel, T.A. Kost, and J.G. Gray, Large-scale purification of plasmid DNA by fast protein liquid chromatography using a Hi-Load Q Sepharose column. Anal. Biochem. 203 (1992) 169.
摘要: 本論文分成兩部分: 第一部份研究(以烷基酸分子改質多孔性氧化鋁薄膜及其在蛋白質吸附的應用),利用不同濃度的正辛酸與正十八酸在不同反應時間下改質多孔性氧化鋁薄膜,以製備疏水性薄膜。續以接觸角儀、全反射傅立葉紅外線光譜儀、與化學分析電子儀分析改質後之薄膜性質,證實改質成功,並獲得較佳改質條件: 10 mM烷基酸濃度與20分鐘的反應時間。本論文更進一步探討在批次與流動程序中,以較佳改質條件下所得之薄膜對牛血清蛋白的吸、脫附表現。批次等溫線結果顯示: 利用正辛酸與正十八酸改質之薄膜,對牛血清蛋白的飽和吸附量分別約為0.003及0.004 micron mol/cm2。此外,本研究亦利用液相層析儀與螢光儀探討牛血清蛋白在吸、脫附過程中可能的構型變化。另流動程序的實驗結果顯示: 牛血清蛋白緩慢的吸、脫附速率為影響其流動吸、脫附成效的主因。 第二部份的研究(製備無機-有機混成陰離子交換薄膜及其在質體DNA與RNA分離之應用),則是將N-[3-(trimethoxysilyl)propyl] ethylene diamine 與3-(triethoxysilyl)propyl isocyanate反應後產物(前驅物)塗佈至多孔性玻璃纖維及氧化鋁薄膜,再經溴乙烷反應,以製備無機-有機混成陰離子交換薄膜,並利用傅立葉紅外線光譜儀分析結果證實薄膜改質成功。經改質後,玻璃纖維及氧化鋁薄膜的陰離子交換容量分別為6.2 及 1.5 micron eq/cm2。批次吸附量結果顯示:質體DNA吸附量高低排序為商業高分子薄膜產品SB6407 > 改質後玻璃纖維薄膜 > 改質後氧化鋁薄膜;RNA吸附量高低排序則為SB6407≒改質後玻璃纖維薄膜 > 改質後氧化鋁薄膜。另外,最佳批次脫附條件為二階段脫附:利用含有2 M NaCl的50 mM Tris-HCl, pH 8溶液脫附RNA,再以含1 M NaCl及20% ethanol的50 mM Tris-HCl, pH 8溶液脫附質體DNA。在流動程序中,當流速為1 ml/min、進料為10 micron g質體DNA + 10 micron g RNA的混合物或cell lysate時,以一片改質後玻璃纖維薄膜或SB6407薄膜(直徑47 mm)可將質體DNA及RNA完全分離,但使用相疊多片的改質後氧化鋁薄膜(直徑13 mm)則分離效果差。使用改質後玻璃纖維薄膜所得質體DNA的回收率可達98-106%,高於SB6407薄膜的回收率(91-96%)。
This study was divided into two parts. In the first part (Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption), porous alumina membranes were modified with two kinds of n-alkanoic acids (octanoic acid and octadecanoic acid) at different concentrations and reaction times for the preparation of hydrophobic membranes. The properties of the modified membranes were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and electron spectroscopy for chemical analysis (ESCA), and the better modification condition was determined as reaction time of 20 min and concentration of 10 mM for both n-alkanoic acids. Furthermore, adsorption and desorption performances of bovine serum albumin (BSA) onto the modified membranes in the batch and flow processes were investigated. The saturation capacity was 0.003 micron mol/cm2 for the octanoic acid-modified membrane and 0.004 micron mol/cm2 for the octadecanoic acid-modified membrane, under the better modification condition. Liquid chromatography and fluorescence measurement were subsequently conducted to analyze the BSA properties during the adsorption and desorption stages. Finally, the flow performance of BSA was found to be limited by its slow adsorption and desorption rates. In the second part of this study (Preparation of inorganic-organic anion-exchange membranes and their application in plasmid DNA and RNA separation), inorganic-organic anion-exchange membranes were prepared by coating a precursor, the product of N-[3-(trimethoxysilyl)propyl] ethylene diamine reacted with 3-(triethoxysilyl)propyl isocyanate, on macroporous glass fiber and alumina membranes, followed by bromoethane treatment. The FTIR results demonstrated the successful membrane modification, and the resulted anion-exchange capacities were 6.2 and 1.5 micron eq/cm2, respectively, for modified glass fiber membrane and modified alumina membrane. In batch adsorption process, the corresponding adsorption capacity for plasmid DNA could be sorted by: commercial polymeric SB6407 > modified glass fiber > modified alumina membrane; while for RNA adsorption, the order became: modified glass fiber = SB6407 > modified alumina membrane. The optimal elution condition found from batch desorption performance was: 2 M NaCl in 50 mM Tris-HCl, pH 8 for RNA elution, followed by 1 M NaCl and 20% ethanol in 50 mM Tris-HCl, pH 8 for plasmid DNA elution. In membrane chromatography process, plasmid DNA and RNA could be clearly separated from the feed of 10 micron g plasmid DNA + 10 micron g RNA mixture or cell lysate by one piece of 47 mm modified glass fiber or SB6407 membrane, but not by the stacked 13 mm modified alumina membranes. The overall plasmid DNA recovery for the modified glass fiber membrane was 98-106%, higher than that of SB6407 membrane (91-96%).
其他識別: U0005-2101200816250800
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.