Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3639
標題: 使用固定陽離子界面活性劑之陽離子交換薄膜進行酚萃取之研究
Extraction of Phenols Using Cationic Surfactant-Immobilized Cation Exchange Membranes
作者: 徐照強
Shiu, Chao-Chiang
關鍵字: Cationic surfactant
陽離子界面活性劑
Cation exchange membrane
Adsorption
Desorption
Concentration
陽離子交換薄膜
吸附
脫附
濃縮
出版社: 化學工程學系所
引用: [1] Nanqin Li and Hian Kee Lee, Trace Enrichment of Phenolic Compounds from Aqueous Samples by Dynamic Ion-Exchange Solid-Phase Extraction, Anal. Chem. , 69,5193-5199, 1997. [2] E.M. Thurman and M.S. Mills, Solid Phase Extraction, Principles and Practice. John Wiley & Sons, New York, 1998. [3] R.E. Majors, A Review of Modern Solid-Phase Extraction. LC-GC, 5, 8, 1998. [4] M.C. Hennion, Solid-Phase Extraction - Method Development, Sorbents, and Coupling with Liquid Chromatography. J. Chromatogr. A, 856, 3, 1999. [5] N.J.K. Simpson, Solid Phase Extraction. Marcel Dekker, New York, 2000. [6] H. Sabik, R. Jeannot, and B. Rondeau, Multiresidue Methods, Using Solid-Phase Extraction Techniques for Monitoring Priority Pesticides, in Ground and Surface Waters. J. Chromatogr. A, 885, 217, 2000. [7] M.C. Bruzzoniti, C. Saranini, and E. Menlasti, Preconcentration of Contaminants in Water Analysis. J. Chromatogr. A, 922, 289, 2000. [8] K.R. Reid, L.J. Kennedy, E.W. Crick, and E.D. Conte, Solid-Phase Extraction Sorbent Consisting of Alkyltrimethylammonium Surfactants Immobilized onto Strong Cation-Exchange Polystyrene Resin. J. Chromatogr. A, 975, 135, 2002. [9] J.K. Autry, E.G. Vaught, and E.D. Conte, Preconcentration of Benzalkonium Chloride Using Sodium Dodecyl Sulfate Attached to a Strong Anion Exchange Resin. Microchemical J., 80, 25, 2005. [10] Q. Zhao, S.A. Huss, J.K. Autry, K.R. Reid, and E.D. Conte, Investigation of Elutions from a Surfactant Immobilized Solid Phase Extraction Sorbent Based Upon the Hydrophobicity of the Trapped Species. Microchemical J., 80, 45, 2005. [11] Q. Zhao, R.T. Philpott, T.D. Oakes, and E.D. Conte, Determination of Polyaromatic Hydrocarbons in River Water Using a Sorbent Consisting of Removable Octadecyltrimethylammonium Ions Attached to Cation Exchange Silica in Conjuction with Commercial C18 Silica. Analyst, 130, 750, 2005. [12] W.S. Winston and K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992. [13] Loh, K. L.; Chung, T. S.; Ang, W. F. “Immobilizoed-cell menbrane Bioreactor for high-strength phenol wastewater,” J. Environ. Eng. ASCE, 126, 75-79(2000). [14] Wang, C. C.; Lee, C. M.; Lu, C. J.; Chuang, M. S.; Huang, C. Z.“Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria,” Chemosphere, 41, 1873-1879 (2000). [15] 楊大青,使用吸附性薄膜技術分離黃豆油脫臭蒸餾液之維生素E,碩士論文,國立中興大學化學工程研究所,台中,台灣, 2001. [16] E.L.V. Harris and S. Angal, Separation Based on Structure, in Protein Purification Methods: A Practical Approach. IRL Press, Oxford, 1989. [17] J.C. Janson and L. Rydén, Ion-Exchange Chromatography, in Protein Purification: Principles, High Resolution Methods, and Application. John Wiely & Sons, New York, 1997. [18] M. Mulder, Basic Principle of Membrane Technology. Kluwer Academic Publisher, London, 1991. [19] 王鳳英,界面活性劑的原理與應用,高立圖書有限公司,台灣, 1996. [20] 歐靜枝,乳化溶化技術實務,復漢出版社,台灣, 1997. [21] 趙承深,界面科學基礎,復文書局,台灣, 1996. [22] 黃秋卿,不同特性有機質對鄰-二甲苯、苯及酚之吸附現象研究,碩士論文,國立屏東科技大學環境工程與科學所,屏東,台灣, 1999. [23] Keith L. H. and Telliard W. A. “Priority Pollutants I- a Perspective View,” Environ. Sci. Technol., 13, 416 (1979). [24] 吳珮瑱,中、高濃度酚在中空纖維薄膜生物反應器中降解效率,碩士論文, 元智大學化學工程研究所,中壢,台灣, 2003. [25] Seetharam G. B., Saville B. A., Degradation of phenol using tyrosinase immobilized on siliceous supports, Water Research, 37, 436, 2003. [26] 黃俊智,化學沉澱與樹酯吸附法處裡分衍生物廢水之研究,碩士論文, 元智大學化學工程研究所,中壢,台灣, 1993. [27] 曹功勳,改質黏土吸附酚類化合物之平衡與動力學,碩士論文,元智大學化學工程研究所,中壢,台灣, 2002. [28] 黃寶慧,李茂榮,固相萃取技術, Chemistry, 319, 56, 1998. [29] 楊雅雯,線上固相萃取結合高效能液相層析檢測水中之苯脲型除草劑, 碩士論文,東吳大學化學系研究所,台北,台灣, 2005. [30] Lange, Norbert Adolph, Lange''s handbook of chemistry, Speight, J.G, 2005.
摘要: 本研究使用陽離子型界面活性劑固定於強陽離子交換薄膜上,進而改質成疏水性或者半疏水半離子性薄膜。首先探討分別以八種不同陽離子界面活性劑固定在兩種不同材質的陽離子交換薄膜(P81和I.C.E. 450 unsupported),結果發現兩種不同材質的薄膜都以直鏈C18固定率效果最為顯著。接著以兩種前處理方式探討在兩種薄膜上,之後再將兩種不同對立離子的C18界面活性劑固定於薄膜上,從上述條件可以整合出八種不同組合。最後選擇經HCl前處理的P81薄膜做深入探討條件,以此條件下提高界面活性劑(C18-OH)濃度的研究中,找出進料量為150 μmol、2000 μmol、5000 μmol時,其界面活性劑(C18-OH)固定P81薄膜之固定率分別為50 %、100 %、150 %,達到我們所期望的探討條件。在吸、脫附研究中,首先針對在批次固相萃取方面,使用Phenol、4-Nitrophenol、4-Chloro-3-methylphenol三種不同的酚進行吸附實驗;接著在脫附實驗中,分別比較100 % MeOH、50 % EtOH、50 % EtOH with 1 M NaCl、50 % IPA with 1 M NaCl四種不同的脫附溶劑進行脫附。在吸附實驗部份,在固定率為50 %時,除了4-Chloro-3-methylphenol可以完全吸附外,其餘兩種酚就無法完全吸附上薄膜;在固定率為100 %時,除了Phenol不能完全吸附外,其餘兩種酚是可以完全吸附上薄膜;在固定率為150 %時,卻發現三種酚都無法完全吸附於薄膜上。而脫附實驗部份,在脫附溶劑當中,又以50 % IPA with 1 M NaCl脫附效果較好。在流動固相萃取方面,針對薄膜大小分為兩部份:一個是以直徑13 mm的圓形薄膜堆疊成十七片,另一個是直徑47 mm的圓形薄膜一片,之後將三種酚分別以單一各別酚以及三種混合酚做流動實驗。整體研究結果,在薄膜大小比較結果部份,以直徑13 mm的圓形薄膜堆疊成十七片的脫附效果和濃縮效果最好。在三種酚比較結果中,發現4-Nitrophenol不管是在回收率或者是濃縮效果都比其他兩種酚要來的好,甚至在濃縮效果中發現竟可以高達40~50倍。
In this study, cationic surfactants were immobilized onto strong cation exchange membranes to form hydrophobic membrane for the application in solid phase extraction of phenols. First, eight cationic surfactants were immobilized onto two kinds of cation exchange membranes (P81 and I.C.E. 450 unsupported). The results indicate that the use of long-carbon-chain C18 surfactant with counter ion of OH- could achieve better surfactant immobilization performance. When the C18-OH feed amount was 150 μmol, 2000 μmol, and 5000 μmol, respectively, the resulted immobilization percentage on the P81 membrane was 50%, 100%, and 150%, respectively. Phenol, 4-nitrophenol, and 4-chloro-3-methylphenol were the analytes used for batch adsorption and the feed concentration was 1 ppm. For 50% surfactant immobilization, 4-chloro-3-methylphenol could be adsorbed fully while the others could not. For 100% immobilization, only phenol was partly adsorbed. For 150% immobilization, none of them were completely adsorbed onto the membrane. In batch desorption experiment, 100% methanol, 50% ethanol, 50% ethanol with 1 M NaCl, and 50% isopropanol alcohol with 1 M NaCl were used as desorbents. 50% isopropanol alcohol with 1 M NaCl was found to be the best desorbent and its desorption efficiency was 59% for phenol, 94% for 4-nitrophenol, and 83% for 4-chloro-3-methylphenol. For the flow solid-phase-extraction process, the results show that a 17-piece stack of 13 mm disks obtained 40~50 concentration fold for 4-nitrophenol, 20~30 concentration fold for 4-chloro-3-methylphenol, 5~10 concentration fold for phenol, from a feed mixture of 0.1 ppm for each component.
URI: http://hdl.handle.net/11455/3639
其他識別: U0005-2308200720415300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200720415300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.