Please use this identifier to cite or link to this item:
標題: 經由雙精胺酸轉位路徑輸送基因重組蛋白質之研究
Translocation of recombinant protein via the Tat pathway in Escherichia coli
作者: 葉志賢
Ye, Jhih-Sian
關鍵字: Twin-arginine translocation
signal peptide
Green fluorescence protein
出版社: 化學工程學系所
引用: [1] Dyck MK, Lacroix D, Pothier F, Sirard MA. 2003. Making recombinant proteins in animals—different systems, different applications. Trends Biotechnol 21(9):394-9. [2] Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-72. [3] Georgiou G, Valax P. 1996. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190-7 [4] Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512-38. [5] Walsh G. 2003. Biopharmaceutical benchmarks—2003. Nat Biotechnol 21(8):865-70. [6] Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399-408. [7] Bessette PH, Aslund F, Beckwith J, Georgiou G. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli. cytoplasm. Proc Natl Acad Sci U S A 96(24):13703-8. [8] Ritz D, Beckwith J. 2001. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21-48. [9] Zhang Z, Gildersleeve J, Yang YY, Xu R, Loo JA, Uryu S, Wong CH, Schultz PG. 2004. A new strategy for the synthesis of glycoproteins. Science 303(5656):371-3. [10] Mitraki A. King J. 1989. Protein folding intermediates and inclusion body formation, Biotechnology. 7:690-697. [11] Chalmers J. J., Kim E., Telford J. N., Wong E. Y., Tacon W. C., Shuler M. L., Wilson D. B. 1990. Effects of temperature on Escherichia coli. overproducing β-lactamase or human epidermal growth factor. Appl Environ Microbiol. Jan; 56(1):104-11. [12] Piatak M, Lane JA, Laird W, Bjorn MJ, Wang A, Williams M. 1988. Expression of soluble and fully functional ricin A chain in Escherichia coli. is temperature-sensitive. J. Biol. Chem. 263(10):4837-43. [13] Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 65(5):625-35. [14] Mergulhao FJ, Summers DK, Monteiro GA. 2005. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177-202. [15] Dalbey RE, Heijne Gv, editors. 2002. Protein targetin, transport & translocation. [16] Berks BC, Palmer T, Sargent F. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8(2):174-81. [17] Berks BC, Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35(2):260-74. [18] Fisher AC, Delisa MP. 2004. A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 186(22):7467-73. [19] Muller M. 2005. Twin-arginine-specific protein export in Escherichia coli. Res Microbiol 156(2):131-6. [20] Palmer T, Berks BC. 2003. Moving folded proteins across the bacterial cell membrane. Microbiology 149(Pt 3):547-56. [21] Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13(4):175-80. [22] Dalbey RE, Chen M. 2004. Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694(1-3):37-53. [23] Den Blaauwen T, Driessen AJ. 1996. Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165(1):1-8. [24] Driessen AJ, Fekkes P, Van der Wolk JP. 1998. The Sec system. Curr Opin Microbiol 1(2):216-22. [25] Sandkvist M. 2001. Biology of type II secretion. Mol Microbiol 40(2):271-83. [26] Alami M, Trescher D, Wu LF, Muller. 2002. Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J Biol Chem 277(23):20499-503. [27] Jeong KJ, Lee SY. 2000. Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67(4):398-407. [28] DeLisa MP, Tullman D, Georgiou G. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100(10):6115-20. [29] Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock . J Biol Chem 276(11):8159-64. [30] Thomas JD, Daniel RA, Errington J, Robinson C. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocse (Tat) pathway in Escherichia coli. Mol Microbiol 39(1):47-53. [31] Berks, B. C., 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22, 393-404. [32] Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R. 1997. Sec-independent protein translocation by the maize Hcf106 protein. Science 278(5342):1467-70. [33] Stanley NR, Palmer T, Berks BC. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275(16):11591-6. [34] Dalbey RE. 19913 Leader peptidase. Mol Microbiol 5(12):2855-60. [35] Tschantz WR, Dalbey RE. 1994. Bacterial leader peptidase 1. Methods Enzymol 244:285-301. [36] Ling Lin Fu, Zi Rong Xu, Wei Fen Li, Jiang Bing Shuai, Ping Lu, Chun Xia Hu. 2007. Protein secretion pathways in Bacillus subtilis: Implication foroptimization of heterologous protein secretion. Biotechnol Adv 25(1):1-12. [37] Cristobal S, de Gier JW, Nielsen H, von Heijne G. 1999. Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. Embo J 18(11):2982-90. [38] Wexler M, Bogsch EG, Klosgen RB, Palmer T, Robinson C, Berks BC. 1998. Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the delta pH pathway. FEBS Lett 431(3):339-42. [39] Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515-47. [40] Dreusch A, Burgisser DM, Heizmann CW, Zumft WG. 1997. Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim Biophys Acta 1319(2-3):311-8. [41] Gross R, Simon J, Kroger A. 1999. The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from wolinella succinogenes. Arch Microbiol 172(4):227-32. [42] Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA. 1999. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263(3):543-51. [43] Buchanan G, Sargent F, Berks BC, Palmer T. 2001. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177(1):107-12. [44] Ignatova Z, Hornle C, Nurk A, Kasche V. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291(1):146-9. [45] Jack RL, Sargent F, Berks BC, Sawers G, Palmer T. 2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183(5):1801-4. [46] Robinson C, Bolhuis A. 2001. Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2(5):350-6. [47] Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T. 2000. TatD is a cotoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275(22):16717-22. [48] Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273(29):18003-6. [49] Saegent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. 1998. Overlapping functions of components of a bacterial Sce-independent protein export pathway. Embo J 17(13):3640-50. [50] Behrendt J, Standar K, Lindenstrauss U, Brüser T. 2004. Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett. 234(2):303-8. [51] Allen SC, Barrent CM, Ray N, Robinson C. 2002. Essential cytoplasmic domains in the Escherichia coli TatC protein. J Biol Chem 277(12):10362-6. [52] Buchanan G, Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T. 2002. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43(6):1457-70. [53] Berks BC, Palmer T, Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv Micro Physiol 47:187-254. [54] Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C. 2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276(23):20213-9. [55] Oates J, Mathers J, Mangels D, Kuhlbrandt W, Robinson C, Model K. 2003. Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330(2):277-86. [56] Alami M, Luke I, Deitermann S, Eisner G, Koch HG, Brunner J, Muller M. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12(4):937-46. [57] Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268(12):3361-7. [58] Van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427(6969):36-44. [59] Berg BL, Li J, Heider J, Stewart V. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem 266(33):22380-5. [60] Dilks K, Rose RW, Hartmann E, Pohlschroder M, 2003. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185(4):1478-83. [61] Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH, Jr. 2002. Sequence and phylogenetic analyses of the twin-arginine targeting(Tat) protein export system. Arch Microbiol 177(6):441-50. [62] Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. 2004. Two minimal Tat translocases in Bacillus. Mol Microbiol 54(5):1319-25. [63] Sargent F, Stanley NR, Berks BC, Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274(51):36073-82. [64] Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Forst L, Thomas GH, Cole JA, Turner RJ. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93(1):93-101. [65] Gouffi K, Gerard F, Santini CL, Wu LF. 2004. Dual topology of the Escherichia coli TatA protein. J Biol Chem 279(12):11608-15. [66] Palmer T, Sargent F, Berks BC. 2004. Light traffic: photo-crosslinking a novel transport system. Trends Biochem Sci 29(2):55-7. [67] Clark SA, Theg SM. 1997. A folded protein can be transported across the chloroplast envelop and thylakoid membranes. Mol Biol Cell 8(5):923-34. [68] Rodrigue A, Chanal A, Beck K, Muller M, Wu LF. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223-8. [69] Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF. 1998. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. Embo J 17(1):101-12. [70] Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278(31):28787-92. [71] Turner RJ, Papish AL, Sargent F. 2004. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50(4):225-38. [72] Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. Embo J 23(20):3962-72. [73] Oresnik IJ, Ladner CL, Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323-31. [74] Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, A large chaperone family dedicated to molybdoproteins. Microbiology 150(Pt 4):935-43. [75] Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280(16):15644-8. [76] Papish AL, Ladner CL, Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278(35):32501-6. [77] Bruser T, Sanders C. 2003. An alternative model of the twin-arginine translocation system. Microbiol Res 158(1):7-17. [78] Faury D, Saidane S, Li H, Morosoli R. 2004. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system. Biochim Biophys Acta 1699(1-2):155-62. [79] Spence E, Sarcina M, Ray N, Moller SG, Mullineaux CW, Robinson C. 2003. Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol Microbiol 48(6):1481-9. [80] Berks BC, Palmer T, Sargent F. 2005. Prptein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8(2):174-81. [81] Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F. 2005. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci U S A. 102(24):8460-5. [82] Li Si-Yu, Bang-Yang Chang, Sung-Chyr Lin. 2005. Coexpression of TorD enhances the transport of GFP via the Tat pathway. J Biotechnol 122(4):412-21. [83] Cohen, S.N., Chang, A.C., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U.S.A. 69, 2110-2114. [84] Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1 Spec No):33-8. [85] Paschke M, Hohne W. 2005. A twin-arginine translocation (Tat)-mediated phage display system. Gene 350 (1):79-88. [86] Robinson C, Bolhuis A. 2004. Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta 1694(1-3):135-47.
摘要: 大腸桿菌有多種路徑輸送其分泌蛋白,近年來發現新興系統,雙精胺酸轉位(twin-arginine translocation)系統(Tat),能夠輸送已摺疊好之蛋白至細胞間質。然而,Tat系統之輸送效益比起Sec系統還要來得低。在先前地研究發現到共表現TorD能夠增進有連接TorA之訊息導引胜肽的綠色螢光蛋白(GFP)。此研究之目的找出GFP蛋白和TorD蛋白之間最佳化之產出比例。在最後,製作好三種基因重組蛋白之培養基含有可產TorD蛋白和GFP蛋白。細胞質與細胞間質可藉由細胞劃分來做分離,西方墨點法與螢光光度計來做為蛋白輸送效益之依據。
Gram-negative bacteria such as Escherichia coli have multiple pathways for exporting secretory proteins. The Twin-arginine translocation (Tat) pathway was recently found to be a novel system which is capable of translocating folded proteins into the periplasm. However, the translocation efficiency of the Tat pathway is not as high as that of the Sec pathway. It has been previously shown that the co-expression of TorD is capable of enhancing the translocation of green fluorescence protein (GFP) with TorA signal peptide. One of the objectives of this study is to identify the optimal stoichiometric ratio between GFP and TorD for protein secretion. To this end, three recombinant E. coli strains harboring plasmids encoding GFP fusion and TorD were constructed. Periplasmic and cytoplasmic fractions of the cells were fractionated by sucrose gradient centrifugation. Western blotting analysis and fluorescence spectroscopy were used to evaluate the efficiency of protein translocation.
其他識別: U0005-2708200710442900
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.