Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3660
標題: 聚乳酸聚甘醇酸奈米陶瓷複合材料於骨再生之應用
The application of poly(lactic-co-glycolic acid) nanocomposites in bone regeneration
作者: 郭明瑞
Kuo, Ming-Jui
關鍵字: Air plasma
大氣電漿
PLGA
nCDHA
CBD-RGD
聚乳酸聚甘醇酸
缺鈣氫氧基磷灰石
CBD-RGD
出版社: 化學工程學系所
引用: 1.傅宇輝等譯,骨科學原理及應用,大中圖書公司,1987,P33-117 2. Bloom W, Fawcett DW., Delphia PH , Saunders WC , Textbook of Histology, 1968 3. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG.. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineering human bone. Biomaterials 1996;17:175-185 4. Mclean FC, Urist MR. Structure and chemical composition of bone matrix. In bone Fundamental of the Physiology of skeletal Tissue. 1973:P45-55 5. Tilgar V, Kilgas P, Viitak A, Reynolds SJ. The rate of bone mineralization in birds is directly related to alkaline phosphatase activity. Physiol Biochem Zool. 2008;81(1):106-11 6. Hollinger JO, Thomas A, Einhorn BA. Doll, and Charles sfeir. Bone tissure engineering. 2004 7. Davies JE, Karp JM, Baksh D. Mesenchymal cell culture: bone in method of tissue Engineering. 2002:P333-341 8. Krupnick AS, Shaaban A, Radu A, Flake AW. Tissue engineering. 2002;8:145-160 9. Maniatopoulos C, Sodek J, Melcher AH . Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell and Tissue Research. 1988: 317-330 10. Zimmermann G, Müller U, Löffler C, Wentzensen A, Moghaddam A. Therapeutic outcome in tibial pseudarthrosis: Bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures. Der Unfallchirurg. 2007;110(11):931-938 11. Chu CF, Albert Lu, Mark Liszkowski, Sipehia RA. Enhanced growth of animal and human endothelial cells on biodegradable polymers. Biochim Biophys Acta. 1999;1472(3):479-85. 12. FengcYS, Lin SB, Chen CF, Liao CJ, Chang KY, Lin YS. An in vivo study on the biocompatibility of a bioresorbable poly(L-Lactide-co-glycolide) pin for bone fixation. Journal of Medical and Biological Engineering. 1998;21(4):233-242 13. Lambda NM, Woodhouse KA and Cooper SL. Polyurethanes in Biomedical Application, CRC Press. 1998 14. Lorentz H, Rogers R, Jones L. The impact of lipid on contact angle wettability. Optom Vis Sci. 2007;84(10):946-53 15. Hallab NJ, Bundy KJ, O’Connor K, Moses RL and Jacobs JJ. Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. Tissue Eng, 2001;1:55-71 16. Thomas KA and Cook SD. An Evaluation of Valuables Influencing Implant Fixation by Direct Bone Apposition. J Biomed Mater Res. 1985;19:875-904 17. Brown BD, Smith CG, and Rennie AR. Fabricating colloidal particles with photolithography and their interactions at an air-water interface. Physical Review. 2000;62:951-60 18. Dalby MJ, Riehle MO, Stephen JY, Chris DW, Wilkinson Adam SG. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. IEEE Trans Nanobioscience. 2007;6(3):201-9 19. Hsu SH, Tang CM, Tseng HJ. Gold nanoparticles Induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 2008;9:241-248 20. Loh IH. Plasma Surface Modification in Biomedical Applications AST Technical Journa 21. 錢瑞龍,利用醋酸電漿處理聚乳酸-聚甘醇酸及不織布增進材料表面之細胞貼附性,大同大學,材料工程研究所碩士論文,94年 22. Hollahan JR, Stafford BB, Falb RD, Payne ST. Attachment of amino group to polymers surfaces by radiofrequency plasmas. J Appl Polym Sci. 1969;13:807-816 23. Inagaki N, Tasaka S, Miyazaki H. Sulfonic acid group -containing thin films prepared by plasma polymerization. J Appl Polym Sci. 1989;38:1829-1838 24. Smith MO, Langmuir HM, I. The Theory of Collectors in Gaseous Discharges. Phys. 1926;28:727-763 25. Yang MR, Chen KS. Wettability and lubrication of poly-terafluoroethylene (PTFE) by UV-induced graft copolymerization on plasma-treated surface. J. Materials Chem. And Physics. 1997;50:11-14 26. 吳耀廷、黃曉鳳、溫俊祥,電漿表面在生醫材料上之應用,工業材料雜誌, 212期,93年 27. 方珮珊,CF4/C2H2電漿沉積非對稱聚碸滲透蒸發膜之研究,中原大學化學 工程學系 28. Sheu MS. Biomaterials surface modification using plasma gas discharge process, in D. L. 29. Hanson AD, Michelle E, Behnam PO, Elizabeth LO. Effects of oxygen plasma treatment on adipose-derived human mesenchymal stem cell adherence to poly(L-lactic acid) scaffolds. 2007;18:1387-1400 30. Kim MC, Yang SH, Boo JH, Han JG.. Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surface and Coatings Technology. 2003;174-175:839-844 31. Kim MS, Shin YN, Cho MH, Kim SH, Kim SK, Cho YH. Adhesion behavior of human bone marrow stromal cells on differentially wettable polymer surfaces. Tissue Eng. 2007;13:2095-2103 32. Wise ED. Encyclopedic Handbook of Biomaterials & Bioengineering. Marcel Dekker, Inc., New York, 1995;865-887 33. Wan Y, Yang J, Yang JU, Bei JH, Wang GH. Cell adhesion on gaseous plasma modified poly-(l-lactide) surface under shear stress field. Biomaterials. 2003; 24(21):3757-3764 34. Tatoulian, Bouloussa M, Moriere O, Arefi-Khonsari F, Amouroux F, Rondelez J. Plasma surface modification of organic materials: comparison between polyethylene films and octadecyltrichloro -silane self-assembled monolayer. Langmuir. 2004;20(24):10481-10489 35. Wan YQ, Lu X, Zhu J, Wan C, Yang L, Bei J, Wang J. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials. 2004;25:4777-4783 36. Hsu SH, Chen WC. Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface. Biomaterials. 2000;21:359-367. 37. 徐國財,奈米複合材料,五南圖書出版有限公司,2002 38. Hsu SH, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. 2006;79(4):759-70 39. Hsu SH, Yen HJ, Tsai CL. The response of articular chondrocytes to type II collagen-Au nanocomposites. Artif Organs. 2007;31(12):854-68 40. Rong MI. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin. Polymer. 1999;40:6169-6178 41. Webster TJ, Richard WS, Rena BI. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221-1227 42. Webster TJ, Celaletdin ER, Robert HD, Richard WS, Rena BI. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803-1810 43. Kay SA, Anil TH, Karen HA, Thomas J. WE. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue eng. 2002;8(5):753-761 44. Webster TJ, Linda SS, Richard WS, Rena BI. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve Vitronectin. Tissue eng. 2001;7(3):753-761 45. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593-596 46. Webster TJ, Siegel RW, Bizios R. Specific proteins mediate osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51,475-483 47. 方向威,機械工程手冊4,五南圖書公司,1994 48. Pytela RO, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985; 40: 191-198 49. Pytela RO, Pierschbacher M, Argraves S, Suzuki S. Arginine-glycine-aspartic acid adhesion receptors. Methods in Enzymology . 1987;144:475-489 50. Michael A, Hortonu. The avp3 Integrin “Vitronectin Receptor”. Cell Bid. 1997;29: 721-125 51. Reinikainen T, Teleman O and Teeri TT. Proteins. 1995;22:392-403 52. Kulkarni GV, Chen B, Malone JP, Narayanan AS, and George A. Promotion of selective cell attachment by the RGD sequence indentine matrix protein 1. Archives of Oral Biology. 2000;45:475-484 53. Fisher JE, Caulfield MP, Sato M, Quartuccio HA, Gould RJ, Garsky VM, Rodan GA, Rosenblatt M. Fisher JE. Inhibition of osteoclastic bone resorption in vivo by echistatin, an "arginyl-glycyl-aspartyl"(RGD)-containing protein. Endocrinology. 1993;132(3):1411-1413 54. Liu TY , Chen SY , Liu DM. Influence of the aspect ratio of bioactive nanofillers on rheological behavior of PMMA-based orthopedic materials. Journal of Biomedical Materials Research Part B. 2004;71(1):116-122 55. 陳韻如,開發CBD-RGD融合蛋白質應用於固定化細胞培養,中興大學,獸醫學研究所論文,85年 56. Dillon G.P, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym. 1998;9(10):375-395 57. Liu TY, Chen SY, Liu DM, Liou SZ. On the study of BSA-loaded calcium -deficient hydroxyapatite nano-carriers for controlled drug delivery. Journal of Controlled Release. 2005;107:112–121 58. Deliloglu GI. The effect of osteogenic medium on the adhesion of rat bone marrow stromal cell to the hydroxyapatite. Saudi Med J. 2006;27(3):305-311 59. Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG, Alini M, Giannini C, Guagliardi A, Cancedda R. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials. 2007;28(7):1376-1384 60. Pavia. Introduction to SPECTROSCOPY. 2001 61. Nakagawa MA, Teraoka FU, Fujimoto SH, Hamada YO, Kibayashi HI, Takahashi JU. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res A. 2006;77(1):112-8
摘要: 本研究分為兩部份探討,第一部份為混摻不同比例50、100、500及1000 ppm之缺鈣氫氧基磷灰石(nano-calcium deficient Hydroxyapatite;nCDHA)於Poly-(lactide-co-glycolide) (PLGA)溶液中製成薄膜材料,培養老鼠骨髓基質幹細胞(BMSC)於材料上,探討在各濃度之細胞相容性及基因表現。由本研究結果發現混摻不同比例50、100、500及1000 ppm奈米陶瓷之材料表面顯示粒徑隨濃度漸變大然後再變小,且由細胞相容性實驗發現,細胞貼附與表面奈米粒徑大小有關,然而在50 ppm有較好之細胞貼附和ALP、OCN基因表現量,且能維持ALP表現量至14天。第二部份為將第一部份所找出最佳濃度50 ppm之PLGA奈米複合材料,利用大氣電漿接枝上重組之貼附蛋白質(cellulose-binding domain-arginine-glycine-aspartic acid;CBD-RGD),由ESCA分析顯示N基在接枝RGD後增加且C-N鍵亦增加,再由接枝後之接觸角上升可證明CBD-RGD成功接枝在材料表面,且接枝上CBD-RGD之PLGA有較好之細胞貼附及ALP基因表現。由以上述可得知,奈米陶瓷不僅能促進BMSC細胞貼附且能維持基因表現量,然而大氣電漿是強大且方便之工具,電漿改質後不僅能促進細胞貼附且能有效接枝CBD-RGD於PLGA表面。
This research includes two different modification of poly-(lactide-glycolide) (PLGA). In the first part, PLGA films were mixed with different nano-calcium deficient hydroxyapatite (nCDHA) in a concentrative 50-1000 ppm. Cell proliferation and gene expression of ALP and OCN of bone marrow stromal cells (BMSC) were enchanced by the nonocomposite. Moreover, the osteoinductivity of PLGA-nCDHA composite kept ALP gene expression of the cells at 14 days. 50 ppm of nCDHA was the aptconcentration. In the second part, cellulose-binding domain arginine-glycine-aspartic acid (CBD-RGD) was successfully grafted onto the surface of PLGA by air plasma, confirmed by ESCA data. CBD-RGD also enhanced the adhesion and ALP gene expression of BMSC. It was concluded from this study that the use of air plasma was a powerful technique for modification of biomaterials, and nCDHA combined with CBD-RGD were conducive to bone differentiation of BMSC.
URI: http://hdl.handle.net/11455/3660
其他識別: U0005-3001200820125200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001200820125200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.