Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3661
標題: 活化奈米碳管於電容性質之應用與研究
The Study and Applications of Activated Carbon Nanotubes for Capacitive Properties
作者: 劉文傑
Liu, Wen-Jay
關鍵字: Carbon nanotubes(CNTs)
奈米碳管
Purified CNTs
Activated CNTs
Electrode of electrochemical capacitor
奈米碳管純化
奈米碳管活化
電化學電容電極
出版社: 化學工程學系所
引用: 1 薛立人,“工業材料”2月號p158-164 (2001). 2 Z. J. Liu, Z. Xu, Z. Y. Yuan, D. Lu, W. Chen, and W. Zhou. “Cyclohexanol dehydrogenation over Co/carbon nanotube catalysts and the effect of promoter K on performance.” Catal. Lett., 72(3/4), 203-206, 2001. 3 X. Dong, H. B. Zhang, G. D. Lin, Y. Z. Yuan, and K R. Tasi. “Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2.” Catal. Lett., 85(3/4), 237-246, 2003. 4 J. Kong, N. R, Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al. “Nanotube molecular wires as chemical sensors.” Science, 287, 622-625, 2000. 5 J. J. Zhao, A. Buldum, J. Han, and P. Lu. “Gas molecule adsorption in carbon nanotubes and nanotube bundles.” Nanotechnology, 13(2), 195-200, 2000. 6 J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, and I. N. Lin. “Characteristics of flat panel display using carbon nanotubes as electron emitters.” Diamond Relat. Mater., 9(3-6), 1270, 2000. 7 R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, and D. H. Wu. Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power. Sources, 84(1):126-129, 1999. 8 K. Jurewicz, S. Delpeux, V. Bertagna, F. B&eacute;guin, and E. Frackowiak. “Supercapacitors from nanotubes/polypyrrole composites.” Chem. Phys. Lett., 347(1-3), 36-40, 2001. 9 Chen, J. H., Li, W. Z., Wang, D. Z., Yang, S. X., Wen, J. G., and Ren, Z. F., “ Electrochemical characterization of cabon nanotubes as electrode in electrochemical double-layer capacitors,” Carbon, 40, pp. 1193-1197 (2002). 10 Li, C., Wang, D., Liang, T., Wang, X., Wu, J., Hu, X., and Liang, J., “Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors,” Powder Technology, 142, pp.175-179 (2004). 11 H. W. Kroto et al., “C60 Buckminsterfullerene.” Nature, 318, 1985:162. 12 S. Iijima, “Helical microtubules of graphitic carbon.” Nature, 354, 1991:56. 13 C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, et al. “Semi-continuous synthesis single-walled carbon nanotubes by a hydrogen arc discharage method.” Carbon, 37(11), 1865-1868, 1995. 14 Y. Saito, K. Nishikubo, K. Kawabeta, and T. Matsumoto. “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge.” J. Appl. Phys., 80(5), 3062-3067, 1996. 15 V. Pillai, P. Kumar, M. S. Multani, and D. O. Shah. “Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing.” Colloids and Surfaces A, 80, 69-75, 1993. 16 R.E. Smalley et al.,“ Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization ”, Chemical Physics Letters, Vol. 243, pp.49-54, 1995. 17 P. G. Collins and P. Avouris. “Nanotubes for electronics.” Sci. Am., 62-69, 2000. 18 N. M. Rodriguez, M. S. Kim, and R. T. K. Baker. “Carbon nanofibers: a unique catalyst support medium.” J. Phys. Chem., 98(50), 13108-13111, 1994. 19 J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, and R. E. Smalley. “Fullerene ‘crop circles’.” Nature, 385, 780-781, 1997. 20 P. R. Birkett, A. J. Cheetham, B. R. Eggen, J. P. Hare, H. W. Kroto, and D. R. M. Walton. “Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter.” Chem. Phys. Lett., 281(1-3), 111-114, 1997. 21 M. Endo and H. W. Kroto. “Formation of carbon nanofibers.” J. Phys. Chem., 96(17), 6941-6944, 1992. 22 R. Saito, G. Dresselhaus, M. S. Dresselhaus. “Topological defects in large fullerences.” Chem. Phys. Lett., 195, 537-542, 1992. 23 J. C. Charlier, X. Blase, De A Vita, and R. Car. “Microscopic growth mechanisms for carbon and boron-nitride nanotubes.” Appl. Phys. A, 68, 267-273, 1999. 24 O. A. Louchev, and Y. Sato. “Nanotube self-organization: Formation by step-flow growth.” Appl. Phys. Lett., 74(2), 194-196, 1999. 25 S. Iijima, P. M. Ajayan, and T. Ichihashi. “Growth model for carbon nanotubes.” Phys. Rev. Lett., 69(21), 3100-3103, 1992. 26 S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, E. C. Dickey, and F. Derbyshire. “Model of carbon nanotube growth through chemical vapor deposition.” Chem.Phys.Lett., 315(1-2), 25, 1999. 27 C. Laurent, E. Flahaut, A. Peigney, and A. Rousset. “Metal nanoparticles for the catalytic synthesis of carbon nanotubes.” New J. Chem. 22(11), 1229-1237, 1998. 28 陳嘉銘,奈米鎂-鎳合金於加氫/脫氫反應的應用:PEG胺化反應及奈米碳管的成長,國立中興大學化學工程學系博士論文,2004. 29 K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration.” Chem. Phys. Lett., 282,1998:429. 30 J. L. Bronikowski, R. E. Margrave, Smalley and R. H. Hauge, “Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) J. Phys. Chem. 105, 2001:8297 31 楊占紅, 李新海, 李晶等, 中南工業大學學報, 30 (4), 1999:389. 32 A. C. Dillon, K. M. Jones, T. A. Bekkeclahl, C. K. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377-379, 1997. 33 L. Jin, C Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett. 73 (9), 1197-1199 ,1998. 34 G. Nagy, M Levy, R. Scarmozzino, R. M. Osgood, Jr. H. Dai, R. E. Smalley, and G. F. McLane, “Carbon nanotube tipped atomic force microscopy for measurement of <100nm etch morphology on semiconductors”, Appl. Phys. Lett., 73 (4), 529-531, 1998. 35 C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes”, Appl. Phys. Lett., 70 (11), 1480-1482, 1997. 36 山口正治及馬越佑吉著,丁樹深譯,“金屬間化合物”,科學出版社,北京,1991. 37 尹衍升、張金生、李嘉、劉英才、譚訓彥、龔紅宇等,“新型半陶瓷材料—金屬間化合物及其應用”,中國陶瓷,38(1),39-42,1992. 38 張立德及牟季美,“奈米材料和奈米結構”,科學出版社,北京,2001. 39 王正全,鈀奈米粒子之製備與應用,國立成功大學化學工程學系博士論文,2001. 40 L. K. Kurihara, G. M. Chow, and P. E. Schoen. “Nanocrystalline metallic powders and films produced by the polyol method.” NanoStructured Mater., 5(6), 607-613, 1995. 41 Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F.,and Thio, T., “ Electrical conductivity of individual carbon nanotubes,” Nature, 383 (6602), pp.679 (1996). 42 Jiang, Q., Qu, M. Z., Zhou, G. M., Zhang, B. L., and Yu, Z. L., “A study of activated carbon nanotubes as electrochemical super capacitors electrode materials,” Materials Letters, 57, pp.988-991 (2002). 43 Li C.S., Wang D.Z., Liang T.X., Wang X.F., Ji L., Materials Letters 52(2004)3774. 44 K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York, (1988). 45 Li, C., Wang D., Liang T., Wang X., and Ji, L., “A study of activated carbon nanotubes as double-layer capacitors electrode materials,” Materials Letter, 58, pp. 3774-3777 (2004). 46 Nwman, J., Tomas-Alyea, K. E., “Electrochemical Systems” John Wiley & Sons (2004). 47 黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”,國立中正大學化工研究所碩士論文, 1999. 48 Deyang Qu, Hang Shi, Journal of Power Sources 74(1998)99 49 柯以侃,吳明珠,儀器分析(熱分析法),文京圖書有限公司,1999. 50 許樹恩、吳泰伯,X光繞射原理與材料結構分析 ,中國材料科學學會,1993. 51 陳力俊等,材料電子顯微鏡學,科儀叢書,1994. 52 陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991. 53 林智仁,“材料分析技術專題”,工業材料雜誌,181期,p.94,2002. 54 洪郁婷,氮化物的奈米結構,國立臺灣大學化學工程學系碩士論文,2001. 55 G. Ertl, H. Kn&ouml;zinger, J. Weitkamp, “ Handbook of Heterogeneous Catalysis ”, vol 3,VCH D-69451 Weinheim, 1508 , 1997.
摘要: 本研究以醇還原法製備奈米介金屬鎳/鎂合金,作為成長奈米碳管所用之觸媒,再以化學氣相沉積法(CVD)成長奈米碳管,並對所製備之奈米碳管加以純化與使用不同活化劑KOH、HNO3、H2SO4活化,提升其熱性質與比表面積,利用XRD、TEM、FESEM、TGA、XRD、FTIR、BET對其做特性分析,並以循環伏安法(CV)來探討其氧化還原行為,量測改質後的比電容值(F/g),尋找最佳的改質方法以提升奈米碳管的表面積與比電容為研究目的。 研究中顯示,FTIR可以得知HNO3活化奈米碳管後會在表面形成-COOH與-OH官能基,並具有1400、1550cm-1之特性峰。由TEM與FESEM的影像來觀察HNO3活化奈米碳管後,活化後的奈米碳管不僅表面結構變的凹凸不平,而且形成許多長度短的奈米碳管。使用濃度5M的HNO3活化奈米碳管12hr後,表面積最高可以提昇到145.29 m2/g,比原來的表面積提升了37.6%,由循環伏安法中得知,未活化的奈米碳管其比電容值為8.86(F/g),最後使用濃度5M的HNO3活化奈米碳管12hr可得到比電容值為22.64(F/g),提升約2.56倍的比電容量。
In this study,nanoscale alloys of nickel and magnesium were synthesized by polyol process. These alloy catalysts were used to form synthesizing carbon nanotubes (CNTs) array through the thermal chemical vapor deposition (CVD) process. In order to enhance the specific surface area of the CNTs,the raw CNTs were purified and treated with KOH、HNO3、H2SO4 as the activating agents. The physical properties and structural information of the modified CNTs were characterized by XRD、TEM、FESEM、TGA、XRD、FTIR、BET. Cyclic voltammetric (CV) were used to evaluate the optimize condition of the modified CNTs for the higher specific capacitance. The results of FTIR show that CNTs after activation treatment by HNO3 possess -COOH and -OH functional groups (with IR bands at 1400 and 1550cm-1). The surface and length became nonregular and shorter,and the CNTs formations were observed by TEM and FESEM images. Using 5M concentration of HNO3 to activate CNTs for 12 hours,the specific surface area increases to 145.29 m2/g (about enhancing 37.5%),and the results of CV have shown that the specific capacitance increases from 8.86 (F/g) to 22.64 (F/g) (about enhancing 256%) after the modified procedures on raw CNTs.
URI: http://hdl.handle.net/11455/3661
其他識別: U0005-3007200716325200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200716325200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.