Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3670
標題: 正己烷(1)+正庚烷(2)、苯(1)+甲苯(2)、苯(1)+N-甲基甲醯胺(2)、環己烷(1)+辛烷(2)、環己烷(1)+壬烷(2)、正庚烷(1)+辛烷(2)、甲苯(1)+間二甲苯(2)以及甲苯(1)+N-甲基甲醯胺(2)雙成分汽液相平衡
Vapor-Liquid Equilibria of Eight Binary Mixtures of Hexane + Heptane, Benzene + Toluene, Benzene + N-Methylformamide, Cyclohexane + Octane, Cyclohexane + Nonane, Heptane + Octane, Toluene + m-Xylene and Toluene + N-Methylformamide
作者: 李堃榮
Lee, Kun-Jung
關鍵字: Vapor-liquid equilibrium
汽液相平衡
density
excess Gibbs energy
hexane
heptane
benzene
toluene
N-methylformamide
cyclohexane
octane
nonane
m-xylene
密度
過剩吉布士自由能
正己烷
正庚烷

甲苯
N-甲基甲醯胺
環己烷
辛烷
壬烷
間二甲苯
出版社: 化學工程學系所
引用: 一、中文部分 [1] 林河木,李明哲,「高溫汽-液相平衡量測與數據關聯」,化工技術,43,1996,頁33-42。 [2] 林河木,李明哲,「超臨界流體系統平衡溶解度之量測及關聯」,化工技術,67(10),1998,頁120-138。 [3] 陳家慶,「二氧化碳與黃豆油指標成分之高壓相平衡」,1999,國立中興大學化學工程研究所碩士論文。 [4] 陳延平,「汽液相平衡實驗與理論計算」,化工技術,43,1996,頁53-66。 [5] 陳文川,「乙醇-乙酸乙酯-水三成分系統於常壓下汽液液相平衡之研究」,1994,國立中央大學化學工程研究所碩士論文。 [6] 高素娟,黃學義,王斯厚,「環己烷蒸餾塔汽液平衡研究」,1996,國立中興大學化學工程研究所專題計畫。 [7]柯清水,「石油化學概論」,正文書局,1980。 二、西文部分 [1] Abrams, D.S., and Prausnitz, J.M., “Statistical thermodynamic of liquid mixtures: A new expression for the excess Gibbs free energy of partly or completely miscible systems,” AIChE J., Vol.21 pp.116-128 (1975). [2] Albert, H.J., and Wood, R.H., “High-pressure flow densimeter for fluids at temperature to 700 K and pressure to 40 MPa,” Rev. Sci. Instrum., Vol.55, No.34, pp.589-593 (1984). [3] Alcart, E., Tardajos, G., and Diar Pefia, M., “Isothermal compressibility of cyclohexane + n-hexane, cyclohexane + n-heptane, cyclohexane + n-octane, and cyclohexane + n-nonane,” J. Chem. Eng. Data, Vol.25 pp.140-145 (1980). [4] Ambrose, D., “Correlation and estimation of vapor-liquid critical properties. Ι. Critical temperatures of organic compounds,” National Physical Laboratory, Tedding, NPL Rep. Chem. (1980). [5] Aminabhavi, T. M., Patil, V. B., Aralaguppi, M. I., and Phayde, H. T.,” Density, viscosity, and refractive index of the binary mixtures of cyclohexane with hexane, heptane, octane, nonane, and decane at (298.15, 303.15, and 308.15) K,” J. Chem. Eng. Data, Vol.41 pp.521-525 (1996). [6] Chang, C.J., “Volume expansion coefficients and activity coefficients of high-pressure carbon dioxide dissolution in organic liquids at 298 K,” J. Chem. Eng. Jpn., Vol.25, pp.164-170 (1992). [7] Chang, C.J., Day, C.Y., Ko, C.M., and Chiu, K.L., “Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures,” Fluid Phase Equilibria, Vol.131, pp.243-258 (1997). [8] Chang, C.J., Chiu K.L., and Day, C.Y., “A new apparatus for the determination of P-x-y diagrams and Henry’s constants in high pressure alcohols with critical carbon dioxide,” J. Supercrit. Fluids., Vol.12, pp.223-237 (1998). [9] Chang, C.J., Lee, M.S., Li, B.C., and Chen, P.Y., “Vapor-liquid equilibria of CO2 with four unsaturated fatty acid esters at elevated puressure,” Fluid Phase Equilibria, Vol.233, pp.56-65 (2005). [10] Chen, C.C., Tang, M., and Chen, Y.P., “Vapor-liquid equilibria of binary and ternary mixtures of cyclohexane,3-methyl-2-butanone, and octane at 101.3 kPa,” J. Chem. Eng. Data, Vol.41, pp.557-561 (1996). [11] Chen, C.C., Chang, C.J., and Yang, P.W., ”Vapor-liquid equilibria of carbon dioxide with linoleic acid, α-tocopherol and triolein at elevated pressures,” Fluid Phase Equilibria, Vol.175, pp.107-115 (2000). [12] Chen, H.I., Chang, H.Y., Huang, E.T.S., and Huang, T.C., “A new phase behavior apparatus for supercritical fluid extraction study,” Ind. Eng. Chem. Res., Vol.39, pp.4849-4852 (2000). [13] Chialvo, M.R.G., and Chialvo, A.C., “Determination of the domain of the function F(HE,GE)= 0 for Wilson, NRTL, LEMF, and UNIQUAC Equations,” Ind. Eng. Chem. Res., Vol.33(4), pp.1035-1039 (1994). [14]Gess, M.A., and Danner, R.P., Thermodynamic analysis of vapor-liquid equilibria: Recommended models and a standard data base, New York (1991). [15] Gibbs, J.W., The collected works of J. Willard Gibbs, Longmans, New York (1928). [16] Gupta S. K., and Rawat B. S., “Isobaric vapor-liquid equilibria for ternary mixtures: Saturated hydrocarbons, xylenes, and ethylbenzene with sulfolane at 101.325 kPa,” J. Chem. Eng. Data, Vol.43, pp. 396-399 (1998). [17] Harris, R.A., Wittig, R., Gmehling, J., Letcher, T.M., Ramjugernath, D., and Raal, J.D., “Vapor-liquid equilibria for four binary systems at 363.15 K: N-methylformamide + hexane, + benzene, + chlorobenzene, and +acetonitrile,” J. Chem. Eng. Data, Vol.48, pp.341-343 (2003). [18] Henry, J.A., Jeffrey, A.G., and Robert, H.W., “Densities of toluene, butanol and their binary mixtures from 289 K to 400 K, and from 0.5 to 20.0 MPa,” Fluid Phase Equilibria, Vol.20, pp.321-330 (1985). [19] Huang, S.H., Lin, H.M., and Chao, K.C., “Experimental investigation of synthesis gas solubility in fischer-tropsch reactor slurry,” Fluid Phase Equilibria, Vol.36, pp.141-148 (1987). [20] Huang J.F., and Lee L.S., “Simultaneous estimation of excess enthalpy, excess Gibbs energy and vapor-liquid equilibrium using the modified Wilson Model,” Fluid Phase Equilibria, Vol.121, pp.27-43 (1996). [21] Huang, X., Xia, S., Ma, P., Song, S., and Ma, B., “Vapor–liquid equilibrium of N-formylmorpholine with toluene and xylene at 101.33 kPa,” J. Chem. Eng. Data, Vol.53, pp.252–255 (2008). [22] Jaubert, J., Borg, P., Coniglio, L., and Barth, D., “Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide,” J. Supercrit. Fluids., Vol.20, pp.145-155 (2001). [23] Jacobsen, R.T., Stewart, R.B., and Jahangiri, M., “Thermo-dynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa,” J. Phys. Chem. Ref. Data, Vol.15, No.32, pp.735-909 (1986). [24] Joback, K.G., and Reid, R.C., “Estimation of pure compound properties from group-contributions,” Chem. Eng. Commun., Vol.5, pp.233-243 (1987). [25] Kato, M., Aizawa, K., Kanakira, T., and Ozawa, T., “A new experimental method of vapor-liquid equilibria at high - pressure,” J. Chem. Eng. Jpn., Vol.24, pp.767-771 (1991). [26] Klara, S.M., Mohamed, R.S., Dempsey, D.M., and Holder, G.D., “Vapor-liquid equilibria for the binary systems of benzene/toluene, diphenylmethane/toluene, m-cresol/1,2,3,4-tetrahydronaphthalene, and quinoline/benzene,” J. Chem. Eng. Data, Vol.32, pp.143-147 (1987). [27] Lee, B.I., and Kesler M.G., “A generalized thermodynamic correlation based on three-parameter corresponding states,” AIChE J., Vol.21, pp.510 (1975). [28] Legret, D., Richon, D., and Renon, H., “Vapor-liquid equilibria up to 100 MPa: A new apparatus,” AIChE J., Vol.27, pp.203-207(1981). [29] Lin, H.M., Kim, H., Leet, W.A., and Chao, K.C., “New vapor-liquid equilibrium apparatus for elevated temperatures and pressures,” Ind. Eng. Chem. Fundam., Vol.24, pp.260-262 (1985). [30] Lin, H.M. and Lin, Y.R., “Flow apparatus of phase equilibrium measurement at elevated temperatures,” AIChE J., Vol.36, pp.1597-1600 (1990). [31] Lockemann, C.A., Munoz de Soto-soliz, S. and Schlunder, E.-U., “High-pressure phase equilibria and densities of the binary system carbon dioxide/methyl laurate,” Chem. Eng. Process., Vol.34, pp.561-564 (1995). [32] Moravkova, L., Wagner, Z., and Linek J.,” (p,Vm,T) measurements of (cyclohexane + nonane) at temperatures from 298.15 K to 328.15 K and at pressures up to 40 MPa,” J. Chem. Thermodynamics, Vol.39, pp.1637-1648 (2007). [33] Nagahama, K., “VLE measurements at elevated pressures for process development,” Fluid Phase Equilibria, Vol.116, pp.361-372 (1996). [34] Nurbay Gultekin, “Vapor-liquid equilibria at 1 atm for binary and ternary systems composed of benzene, toluene, and m-xylene,” J. Chem. Eng. Data, Vol.35, pp.130-132 (1990). [35] Orye, R.V., Prausnitz, J.M., “Multicomponent equilibria with the Wilson equation,” Ind. Eng. Chem., Vol.57, pp.18-26 (1965). [36] Othmer, D., Silvis, F.S., Spiel, A., “Composition of vapors from boiling binary solutions: Pressure equilibrium still for studying water-acetic acid system,” Ind. Eng. Chem., Vol.44, pp.1864-1872(1952). [37] Patel, N.C. and Teja, A.S., ”A new cubic equation of state for fliud and fluid mixtures,” Chem. Eng. Sci., Vol.37, pp.463-473 (1982). [38] Panagiotopoulus, A.Z., and Reid, R.C., “High-pressure phase equilibria in a ternary fluid mixture with a supercritical component,” In Supercritical Fluids: Chemical and Engineering Principles and Applications; ACS Symposium Series 329; American Chemical Society: Washington, DC, pp.115-129 (1987). [39] Paul, R.N., ”Study of liquid-vapor equilibrium in improved equilibrium still,” J. Chem. Eng. Data, Vol.21, pp.165-169 (1976). [40] Peng, D.Y., and Robinson D.B., “A new two-constant equation of state,” Ind. Eng. Chem. Fundam., Vol.15, pp.59-64 (1976). [41] Pitzer, K.S., “The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coerfficients,” J. Am. Chem. Soc., Vol.77, pp.3427 (1955). [42] Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G., Molecular thermodynamics of fluid-phase equilibria, 2nd ed., Prentice-Hall Englewood Cliffs, N.J. (1986). [43] Renon, H., Prausnitz, J.M., “Local composition in thermodynamic excess functions for liquid mixture,” AIChE J., Vol.14, pp.135-144 (1968). [44] Redlich, O., Kister, A.T., “Algebraic representation of thermodynamic properties and the classification of solution,” Ind. Eng. Chem., Vol.40, pp.345-348 (1948). [45] Richon, D., “New experimental developments for phase equilibrium measurements,” Fluid Phase Equilibria, Vol.116, pp.421-428 (1996). [46] Santiago, I., Pereyra, C., Ariza, M.R., and de la Ossa, E.M, “Ethanol + 2-methyl-1-butanol + Calcium Chloride System: Vapor−liquid equilibrium data and correlation using the NRTL electrolyte model,” J. Chem. Eng. Data, Vol.52, pp.458-462 (2007). [47] Simoni, L.D., Lin, Y., Brennecke, J.F., and Stadtherr, M.A., “Modeling liquid−liquid equilibrium of ionic liquid systems with NRTL, Electrolyte-NRTL, and UNIQUAC,” Ind. Eng. Chem. Res., Vol.47(1), pp.256-272 (2008). [48] Smith, J.M., and Van Ness, H.C., Introduction to chemical engineering thermodynamics, 4th Ed, McGraw-Hill, New York (1987). [49] Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., Vol.27, pp.1197-1203 (1972). [50] Sumer, K.M., and Thompson, A.R., “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data, Vol.13(1), pp.31-34 (1968). [51] Ursell, H.D., “The evaluation of Gibbs’ phase integral for imperfect gases,” Proc. Camb. Philos. Soc., Vol.23, pp.685 (1927). [52]Van Ness, H.C., and Abbott, M.M., Classical thermodynamics of nonelectrolyte solutions: With applications to phase equilibria, sec 5-7., McGraw-Hill, New York (1982). [53] Walas, S.M., Phase equilibria in chemical engineering, butterworth, Boston (1985). [54] Wilson, G.M., “Vapor-liquid equilibrium XI, A new expression for the excess free energy of mixing,” J. Am. Chem. Soc., Vol.86, pp.127-130 (1964). [55] Wisniak, J., Magen, E., Shachar, M., and Zeroni, I., “Phase equilibria in the systems hexane + heptane and methyl1,1-dimethylethyl ether + hexane + heptane,” J. Chem. Eng. Data, Vol.42, pp.458-462 (1997). [56]Wisniak, J., Magen, E., Shachar, M., and Zeroni, I., “Isobaric vapor-liquid equilibria in the systems methyl1,1-dimethylethyl ether + octane and heptane + octane,” J. Chem. Eng. Data, Vol.42, pp.1191-1194 (1997). [57] Willman, B. and Teja, A.S., “Vapor-liquid equilibria in toluene + m -xylene, toluene + n-decane, and n-decane + m-xylene mixtures, ” J. Chem. Eng. Data, Vol.30, pp.116-119 (1985)
摘要: 本研究完成333 K及353 K八組雙成分系統恆溫相平衡實驗,即正己烷(1)+正庚烷(2)、苯(1)+甲苯(2)、苯(1)+N-甲基甲醯胺(2)、環己烷(1)+辛烷(2)、環己烷(1)+壬烷(2)、正庚烷(1)+辛烷(2)、甲苯(1)+間二甲苯(2)及甲苯(1)+N-甲基甲醯胺(2)之汽液相平衡實驗量測,壓力範圍在0.5到101.3 kPa之間。以NRTL、UNIQUAC及Wilson三種活性係數模式來關聯泡點壓力及液相莫爾分率的實驗值,獲得模式的兩個交互作用參數,再由 Soave-Redlich-Kwong 狀態方程式,得到汽相莫爾分率值。汽相與液相密度的實驗值,是藉由兩個震盪管密度儀分別獲得。吾人的實驗結果,指出五組雙成分正己烷(1)+正庚烷(2)、苯(1)+甲苯(2)、環己烷(1)+辛烷(2)、正庚烷(1)+辛烷(2)及甲苯(1)+間二甲苯(2)的混和溶液趨近理想溶液。而三種雙成分苯(1)+N-甲基甲醯胺(2)、環己烷(1)+壬烷(2)及甲苯(1)+N-甲基甲醯胺(2)的混合溶液,則巨幅地偏離理想溶液。兩組雙成分苯(1)+甲苯(2)及環己烷(1)+辛烷(2)的混合溶液吉布士自由能呈現負值,代表此二系統是溶合(salvation)的放熱混和,其餘雙成分系統均成吸熱混合。
Isothermal vapor-liquid equilibria (VLE) at 333.15 K and 353.15 K for eight binary mixtures of hexane + heptane, benzene + toluene, benzene + N-methylformamide, cyclohexane + octane, cyclohexane + nonane, heptane + octane, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0.5 to 101.3 kPa. The NRTL, UNIQUAC and the Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave-Redlich-Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers. Phase behaviors of the P-T-x-y diagrams indicate that five mixtures of hexane + heptane, benzene + toluene, cyclohexane + octane, heptane + octane and toluene + m-xylene were close to the ideal solution. However, cyclohexane + nonane and two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The benzene + toluene and cyclohexane + octane mixture are negative in the excess Gibbs energy, indicating that they are exothermic systems, but the other six binary mixtures belong to endothermic systems.
URI: http://hdl.handle.net/11455/3670
其他識別: U0005-0902200910454700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0902200910454700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.