Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36798
標題: 紫花紫錐菊微體繁殖研究
Studies on Micropropagation of Echinacea purpurea
作者: 郭展宏
Guo, Jan-Hung
關鍵字: Echinacea purpurea
紫錐菊
micropropagation
density
ventilation
temporary immersion systems
微體繁殖
透氣
培養密度
間歇浸潤培養
出版社: 農藝學系所
引用: 林資哲。2003。紫錐菊咖啡酸衍生物含量與抗氧化能力分析。國立中興大學農藝所碩士論文。台中。 張世政。2005。台灣地區紫錐菊生產與品質評估之研究。國立中興大學農藝所碩士論文。台中。 陳加忠、林瑞松、陳駿季。1998。植物組織培養瓶內微氣候之量測。農林學報 47(4): 77-91。 蔡媦婷。2004。通氣性和液體培養基對蝴蝶蘭瓶苗生長之影響。國立中興大學園藝所博士論文。台中。 劉新裕、林俊義、張成國。2002。藥用植物專輯。台中。行政院農業委員會農業試驗所。P177-180。 Adelerg, J. 2005. Efficiency in thin-film liquid system for Hosta micropropagation. Plant Cell Tiss. Org. Cult. 81: 359-368. Agnieszka, I., T. Winkelmann, S. Richartz, M. Witomska, and M. Serek. 2005. In vitro propagation of Hipprastrum × Chmielii Chm.-influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tiss. Org. Cult. 83: 339-346. Aguilar, M. L., F. L. Espadas, J. Coello, B. E. Maust, C. Trejo, M. L. Robert, and J. M. Santamaria. 2000. The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J. Exp. Bot. 51: 1861-1866. Albarran, J., B. Betrand, M. Lartaud, and H. Etienne. 2005. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tiss. Org. Cult. 81: 27-36. Apostolo, N. M. and B. E. Llorente. 2000. Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinensis (Link) Schn. In Vitro Cell. Dev. Biol.-Plant 36: 243-249. Barrett, B. P., R. L. Brown, K. Locken, R. Maberry, J. A. Bobula, and D. D, Alessio. 2002. Treatment of the common cold with unrefined Echinacea. A randomized, double-blind, placebo-controlled trial. Annals of Internal Medice. 137: 939-946. Brovelli, E. A. 2005. Human gene expression as a tool to determine horticultural maturity in a bioactive plant (Echinacea purpurea L. Moench). J. Agric. Food Chem. 53: 8156-8161. Buddendorf-Joosten, J. M. C. and E. J. Woltering. 1994. Components of the gaseous environment and their effect on plant growth and development in vitro. Plant Growth Reg. 15: 1-16. Chen, C. and J. J. Chen. 2002. Measurement of gass exchange rates in plant tissue culture vessels. Plant Cell Tiss. Org. Cult. 71: 103-109. Choffe, K. L., J. M. R. Victor, S. J. Murch, and P. K. Saxena. 2000a. In vitro regeneratition of Echinacea purpurea L. direct somatic embryogenesis and indirect shoot organogenesis in petiole culture.In Vitro Cell Dev. Biol.- Plant 36: 30-36. Choffe, K. L., S. J. Murch, and P. K. Saxena. 2000b. Regeneration of Echinacea purpurea: induction of root organogenesis from hypocotyl and cotyledon explants. Plant Cell Tiss. Org. Cult. 62: 227-234. Debergh, P., J. Aitken-Christie, D. Cohen, B. Grout, S. von Arnold, R. Zimmerman, and M. Ziv. 1992. Reconsideration of the term ‘Vitrification’ as used in micropropagation. Plant Cell Tiss. Org. Cult. 30: 135-140. Edwin. 1996. Plant propagation by tissue culture. part 2 in practice 2nd. Exegetics Ltd, Edington Wilts England. Escalona, E., J. C. Lorenzo, B. Gonzalez, M. Daquinta, J. L. Gonzalez, Y. Desjardins, and C. G. Borroto. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743-748. Federica, P., B. Stefania, M. Michele, and L. Todd. 2005. Variability in the composition of anti-oxidant compounds in Echinacea species by HPLC. Phyto Chem. Anal. 16: 77-85. Ghasshghaie, J., F. Brenckmann, and B. Saugier. 1992. Water relations and growth of rose plants cultured in vitro under various relative humidities. Plant Cell Tiss. Org. Cult. 30: 51-57. Harbage, J. F. 2001. Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. Hort. 36: 360-364. Hawks, K. 2004. Excerpt of coneflowers: an American classic. The American Gardener (American Horticultural Society). 83: 27-32. Jova, M. C., R. G. Kosky, M. B. Perez, A. S. Pino, V. M. Vega, J. L. Torres, A. R. Cabrera, M. G. Garcia, and J. T. C. deVentura. 2005. Production of yam microtubers using a temporary immersion system. Plant Cell Tiss. Org. Cult. 83: 103-107. Koroch, A., H. R. Juliani, J. Kapteyn, and J. E. Simon. 2002. In vitro regeneration of Echinacea purpurea from leaf explant. Plant Cell Tiss. Org. Cult. 69: 79-83. Lakshmanan, P., M. Danesh, and A. Taji. 2002. Production of four commercially cultivated Echinacea species by different methods of in vitro regeneration. J. Hort. Sci. & Biotech. 77: 158-163. Lata, H., E. Bedir, and R. M. Moraes. 2004. Mass propagation of Echinacea angustifolia: a protocol refinement using shoot encapsulation and temporary immersion liquid system. ISHS Acta Hort. 629: 409-414. Lea, D. B., B. Wide, A. K. R. Landbo, A. S. Meyer, and R. Molgaard. 2005. Synergistic antioxidative effects of alkamida, caffeic acid derivatives, and polysaccharide tractions from Echinacea purpurea on in vitro oxidation of human low density lipoproteins. J. Agric. Food Chem. 53: 9413-9423. Lorenzo, J. C., B. L. Gonzalez, M. Escalona, C. Teisson, P. Espinosa, and C. Borroto. 1998. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 54: 197-200. Lorenzo, J. C., M. D. L. A. Blanco, O. Pelaez, A. Gonzalez, M. Cid, A. Iglesias, B. Gonzalez, M. Ewscalona, P. Espinosa, and C. Borroto. 2001. Sugarcane micropropagation and phenolic excretion. Plant Cell Tiss. Org. Cult. 65: 1-8. Majada, J. P., M. A. Fal, and R. Sanchez-tames. 1997. The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. In Vitro Cell Dev. Biol.-Plant 33: 62-69. Majada, J. P., M. L. Centeno, I. Feito, B. Fernandez, and R. Sanchez-tames. 1998. Stomatal and cuticular traits on carnation tissue culture under different ventilation conditions. Plant Growth Regul. 25: 113-121. McAlister, B., J. Finnie, M. P. Watt, and F. Blakeway. 2005. Use of the temporary immersion bioreactor system (RITAR) for production of commercial Eucalyptus, clones in Mondi Forests (SA). Plant Cell Tiss. Org. Cult. 81:347-358. McGregor, R. L. 1968. The taxonomy of the genus Echinacea. Univ. Kansas Sci. Bul. 48: 113-142. Mechanda, M. S., B. R. Bernard, D. A. Johnson, and J. T. Arnason. 2003. Direct shoot regeneration from leaf segments of mature plants of Echinacea purpurea (L.) Moench. In Vitro Cell Dev. Biol.-Plant 39: 505-509. Miller, S. C. 2005. Echinacea: a miracle herb against aging and cancer? evidence in vivo in mice. eCAM. 2: 309-314. Mills, D. and M. Tal. 2004. The effect of ventilation on in vitro response of seedlings of the cultivated tomato and its wild salt-tolertive Lycopersicon pennellii to salt stress. Plant Cell Tiss. Org. Cult. 78: 209-216. Mill, D., Z. Yanqing, and A. Benzioni. 2004. Improvement of jojoba shoot multiplication in vitro by ventilation. In Vitro Cell Dev. Biol.-Plant 40: 396-402. Murch, J. S., S. E. Peiris, W. L. Shi, S. M. A. Zobayed, and P. K. Saxena. 2006. Genetic diversity in seed populations of Echinacea purpurea controls the capacity for regeneration, route of morphogenesis and phytochemical composition. Plant Cell Rep. 25: 522-532. Nusslein, B., M. Kurzmann, R. Bauer, W. Kreis, and W. Znzymdic. 2000. Degraolation of cichoric acid in Echinacea purpurea. J. Nat. Prod. 63:1615-1618. Oliverira, A. K. D., M. J. Canal, M. L. Centeno, I. Feito, and B. Fernandez. 1997. Endogenous plant growth regulators in carnation tissue culures under different conditions of ventilation. Plant Growth Regul. 22: 169-174. Pan, Z. G., C. Z. Liu, S. M. A. Zobayed, and P. K. Saxena. 2004. Plant regeneration from mesophyll protoplasts of Echinacea purpurea. Plant Cell Tiss. Org. Cult. 77: 251-255. Paek, K. Y., D. Chakrabarty, and E. J. Hahn. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss. Org. Cult. 81: 287-300. Prakash, L., M. Danesh, and A. Taji. 2002. Production of four commercially cultivated Echinacea species by different methods in vitro regeneration. Plant Cell Tiss. Org. Cult. 77: 158-163. Preece, J. E. and E. G. Sutter. 1990. Acclimatization of micropropagated plants to the greenhouse and field. In Micropropagation: technology and application. Ed. Roels, S., C. Noceda, M. Escalona, I. Cejas, C. Noceda, R. Rodriguez, M. J. Canal, J. Sandoval, and P. Debergh. 2005. Optimization of plantain (Musa AAB) microprogation by temporary immersion system. Plant Cell Tiss. Org. Cult. 82: 57-66. Roels, S., C. Noceda, M. Escalona, J. Sandoval, M. J. Canal, R. Rodriguez, and P. Debergh. 2006. The effect of head space renewal in temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tiss. Org. Cult. 84: 155-163. Sallannon, H. and Y. Maziere. 1992. Influence of growth room and vessel humidity on the in vitro development of rose plants. Plant Cell Tiss. Org. Cult. 30: 121-125. Sauve, R. J., M. T. Mmbaga, and S. Zhou. 2004. In vitro regeneration of t he tennessee coneflower (Echinacea tennesseensis).In Vitro cell. Dev. Biol.-Plant 40: 325-328. Short, K. C., J. Warburton, and A.V. Roberts. 1987. In vitro hardening of cultured cauliflower and chrysanthemum plantlets to humidity. Acta Hort. 212: 329-334. Starman, T. W., T. A. Cerny, and A. J. MacKenzine. 1995. Productivity and profitability of some field-grown specialty cut flowers. HortScience. 30: 1217-1220. Stuart, D. L., R. B. H. Wills, and T. M. Dickeson. 2004. Optimisation of polysaccharides in processed Echinacea purpurea; RIRDC: Kingston, ACT, Australia. http://www.rirdc.gov.au/reports/EOI/04-118.pdf. Warosch, Ch., A. Kongbangkerd, A. Kopf, and B. Kopp. 2005. Shoot regeneration from nodules of Charybdis sp. : a comparison of semisolid, liquid and temporary immersion culture systems. Plant Cell Tiss. Org. Cult. 81: 319-322. Wintermans, J. F. G. M. and A. De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis 109:448-453. Whish, J. P. M. and R. R. Williams. 1992. Acclimatization-effects of reduced humidity in vitro. Acta Hort. 319:231-236. Yoshi, Y. K. 2005. Manipulation of the culture environment on in vitro air movement and its impact on plantlets photosynthesis. Plant Cell Tiss. Org. Cult. 83: 251-257. Zimmerman, R. H. 1995. Environmental effects and their control in plant tissue culture - review. Acta Hort. 393: 11-14. Ziv, M. 2005. Simple bioreactors for mass propagation of plants. Plant Cell Tiss. Org. Cult. 81: 277-285. Zobayed, S. M. A. and P. K. Saxena. 2003. In vitro regeneration of Echinacea purpurea L.: enhancement of somatic embryogenesis by indolebutyric acid and dark pre-incubation. In Vitro Cell Dev. Biol.-Plant 39: 605-612. Zhu, L. H., X. Y. Li, and M. Welander. 2005. Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tiss. Org. Cult. 81: 313-318.
摘要: Echinacea purpurea (L.) Moench為重要的北美多年生草本藥用植物,抗氧化能力與藥用保健價值明確,需求量日增致棲地過度被採擷,人工栽培紫錐菊為必然之趨勢。紫錐菊為常異交植物,田間選出生物量大且有效成分高的單株;若能低價量化,則可進行商業生產。 本文以農藝性狀佳、生物量大且cichoric acid含量超過商業標準(2.2%)以上的篩選株,建立無菌苗,並探討透氣與瓶內栽種密度及間歇浸潤處理對紫花紫錐菊組培苗生產的影響。本篇為首篇以宿根篩選單株紫花紫錐菊所建立組織培養之報告。 以宿根植株再生葉片為材料,以1% NaOCl消毒20分鐘後培養於含有0.54 μM (0.1 mg/l) NAA及0.44-0.88 μM (0.1-0.2 mg/l) BA的誘導芽體培養基,至第四週可獲得不定芽,隨BA增加芽體誘導率及芽數均增加,再生植株成功率為90%(37株)。以0-1.96 μM (0-0.4 mg/l) IBA進行試管苗發根處理,結果發現隨IBA濃度增加根數增加,但根長減短。芽長芽之芽數隨BA濃度及培養時間而增加,培養4週後可達3倍以上的芽數。 透氣孔數及瓶內培養密度對組培苗生產的影響以兩篩選株進行試驗。隨透氣孔數與瓶內培養密度增加能顯著降低瓶苗水化率,顯著提高瓶苗生長速率如株高、新葉數及瓶內發根速率,並可增加瓶苗葉片葉綠素含量,提高鮮重、乾重、乾鮮重比值及出瓶存活率;透氣孔數及瓶內培養密度以2個孔及21株(株/3.4 cm2)或4個孔及28株(株/2.5 cm2)的處理組合對瓶苗發根率、生長速率及出瓶存活為佳。 間歇浸潤對組培苗生產的影響以兩篩選株進行試驗。隨打氣間隔時間增加能顯著減少水化苗,顯著提高瓶苗生長速率如株高、新葉數及瓶內發根率及出瓶存活率。以打氣間隔時間6個小時處理對紫花紫錐菊組培苗有較佳的發根率、生長速率及出瓶存活率。 比較間歇浸潤培養與透氣及瓶內密度組合處理,間歇浸潤處理更能提高瓶苗瓶內發根率、減少水化苗發生因而有更佳的瓶苗生長速率與出瓶存活率。
Echinacea purpurea (L.) Moench is an important perennial herbal medicinal plant of North America, it's anti-oxidant capacity and medicinal use for health are valuable. The demand increases in recent years and causes habitat damage, resulting in cultivation of purple coneflower become more and more important from now on. The elite plants of purple coneflower are not easy to maintain because that it is an open-pollinated plant producing variable offspring. The cultivation will be valuable if the micropropagation of plant with high biomass and effective ingredients can be done well cheaply. Elite plants with good agronomy characteristics, large biomass and high cichoric acid content, over 2.2%, that pass commercial requirement were were used to study effects of ventilation and density (V&D) on micropropagation. In addition, the growth of E. purpurea in temportary immersion system (TIS) were also studied. This is the first report related to tissue culture of rationed elite plant of E. purpurea. Explants of leaves of ratiooned elite plant were used to induce shoots in medium containing 0.54 μM (0.1 mg/l) NAA and 0.44-0.88 μM (0.1-0.2 mg/l) BA for 4 weeks. Shoot induction rate and shoot number per explant increased as the BA concentration increased. Plantlets of 37 selected elite plant, about 90%, were established in vitro. Plantlets with more roots and shorter roots increased as the media containing higher IBA concentrations ranging from 0-1.96 μM (0-0.4 mg/l) IBA. Shoots derived from bud explants increased more than 3 times for 4 weeks with media containing higher BA concentrations. To study the effects of V&D on the plantlet growth in vitro, two selected elite plant were used. As the ventilation pore number of cover foil and plant density in vitro increased the following outcomes occurred. The hyperhydric plantlets decreased significantly. Plantlet growing speed for plant height, leaf number and rooting increased. The leaf chlorophyll content, fresh weight, dry weight, fresh/dry ratio all increased and the survival rates were then promoted. The treatments with 2 ventilation pores and 21 plantlets per flask or 4 ventilation pores and 28 plantlets per flask have higher rooted-plantlet rates, growth rates and survival rates. As the time interval between air pumping of TIS increased the hyperhydric plantlets decreased significantly, plantlet growing speed for plant height, leaf number and rooting rate increased, then, the survival rate increased. The 6 hours interval treatment made plantlets with higher rooted-plantlet rate, growth rate and survival rate. Comparing the outcomes of TIS and V&D treatments, We got plantlets with more decreasing hyperhydricity, increasing rooting rate, growth rate and survival rate by TIS than those plantlets of V&D treatments.
URI: http://hdl.handle.net/11455/36798
其他識別: U0005-1807200623120200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807200623120200
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.