Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3679
DC FieldValueLanguage
dc.contributor戴憲弘zh_TW
dc.contributor林慶炫zh_TW
dc.contributor李榮和zh_TW
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen_US
dc.contributor.author陳立姍zh_TW
dc.contributor.authorChen, Li-Shanen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T05:32:26Z-
dc.date.available2014-06-06T05:32:26Z-
dc.identifierU0005-1407200810111800zh_TW
dc.identifier.citation圖解生物可分解塑膠,世茂出版,日本生物可分解塑膠研究會著,蕭 志強譯,ISBN:9577767893,12-13,(2006) Iijima S. Nature. 56, 354 (1991) 新塑膠時代的來臨,美國殼物協會出版,日本生物分解性塑膠實際應用研究委員會原著,許鴻淵譯,14-16,(1995) 生物可分解塑膠,美國殼物協會出版,美國穀物協會編著,5-10,(1997) T. Fujimaki, Polym. Degrad. Stabil. 59, 209 (1998) 環境生物材料講義,塑膠工業技術發展中心,沈曉復博士編著 K. T. Lau, D. Hui, Compos. Pt. B-Eng. 33, 263, (2002) Iijima, S. Nature. 354, 56, (1991) E. T. Thostensona, Z. Renb, T. W. Chou, Compos. Sci. Technol. 60, 1899, (2001) L. Bokobza, Polymer 48, 4907, (2007) C. H. Tseng, C. C. Wang, C. Y. Chen, Chem. Mater.19, 308, (2007) Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, G. H. Hu, Carbon 44, 692, (2006) S. S. Ray, S. Vaudreuil, A. Maazouz, M. Bousmina, J. Nanosci. Nanotechnol. 6, 2191 (2006) E. T. Thostenson, T. W. Chou, Carbon 44, 3022, (2006) X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young, Chem. Mater. 12, 1049, (2000) B. Z. Tang, H. Xu, Macromolecules 32, 2569, (1999) C. V. Santos, F.T. Fisher, R. Ruoff, V. M. Castano, Chem. Mater. 15, 4470, (2003) S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, M. S. Jhon, Macromol. Rapid Commun. 24, 1070, (2003) Y. Wang, J. Deng, K. Wang, Q. Zhang, Q. Fu, J. Appl. Polym. Sci. 104, 3695, (2007) D. Tasis,N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105, (2006) S. T. Lin, K. L. Wei, T. M. Lee, K.C. Chiou, J. J. Lin, Nanotechnology 17, 3197, (2006) J. Chen, M. A. Hamon, H. Hui, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science 282, 95, (1998) M. A. Hamon, H. Hui, P. Bhowmik, S. Niyogi, B. Zhao, M. E. Itkis, R. C. Haddon, Chem. Phys. Lett. 347, 8, (2001) M. A. Hamon, H. Hui, P. Bhowmik, H.M.E. Itkis, R.C. Haddon, Appl. Phys. A-Mater. Sci. Process. 74, 333, (2002) J. Yang, J. Hu, C. Wang, Y. Qin, Z. Guo, Macromol. Mater. Eng. 289, 828, (2004) C Chen, Y. Zhang, J. Phys. D-Appl. Phys. 39, 172, (2006) O. Breuer, U. Sundararaj, Polym. Compos. 25, 630, (2004) M. Moniruzzaman, K. I. Winey, Macromolecules 39, 5194, (2006) Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci. 91, 1463 (2004) S. S. Ray, M. Bousmina, Polymer 46, 12430, (2005) S. S. Ray, J. Bandyopadhyay, M. Bousmina, Polym. Degrad. Stabil. 92, 802, (2007) Y. F. Shih, T. Y. Wang, R. J. Jeng, J. Y. Wu, C. C. Teng, J. Polym. Environ.15, 151, (2007) J. S. Lim, S. M. Hong, D. K. Kim, S. S. Im, J. Appl. Polym. Sci. 107, 3598, (2008) H. S. Kim, B. H. Park, J. S. Yoon, H. J. Jin, Polym Int 56, 1035 (2007) H. Zeng, C. Gao, D. Yan, Adv. Funct. Mater. 16, 812 (2006) W. Song, Z. Zheng, W. Tang, X. Wang, Polymer 48, 3658 (2007) C. S. Wu, H. T. Liao, Polymer 48, 4449 (2007) K. Saeed, S. Y. Park, J. Appl. Polym. Sci. 104, 1957 (2007) J. Li, Z. Fang, L. Tong, A. Gu, F. Liu, Eur. Polym. J. 42, 3230, (2006) M. Avrami, J. Chem. Phys. 7, 1103, (1939) M. Avrami, J. Chem. Phys. 8, 212, (1940) A. Jeziorny, Polymer 19, 1142, (1978) S. H. Lee, T. Ohkita, Holzforschung 58, 537, (2004) G. X. Chen, J. S. Yoon, J. Polym. Sci. Pt. B-Polym. Phys. 43, 817, (2005) S. S. Ray, M. Bousmina, Macromol. Chem. Phys. 207, 1207, (2006) B. Wang, G. Sun, J. Liu, X. He, J. Li, J. Appl. Polym. Sci.100, 3794, (2006) J. Y. Kim, H. S. Park, S. H. Kim, Polymer 47, 1379, (2006) E. C. Chen, T. M. Wu, Polym. Eng. Sci. 46, 1309, (2006) E. C. Chen, T. M. Wu, J. Polym. Sci. Pt. B-Polym. Phys. 46, 158, (2008) K. Cho, J. Lee, K. Kwon, J. Appl. Polym. Sci. 79, 1025, (2001) I. Taniguchi, S. Nakano, T. Nakamura, A. E. Salmawy, M. Miyamoto, Y. Kimura, Macromol. Biosci. 2, 447, (2002) M. S. Nikolic, D. Poleti, J. Djonlagic, Eur. Polym. J. 39, 2183, (2003) F. Li, X. Xu, J. Yu, A. Cao, Polym. Degrad. Stabil. 92, 1053, (2007) C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, Z. Yang, J. Solid State Chem. 177, 4394, (2004) Z. Kulinski, and E. Piorkowska, Polymer 46, 10290, (2005). H. Zhang, Z. Zhang, Eur. Polym. J. 43, 3197, (2007) 奈米碳管,五南出版,成會明編著,ISBN:9571134996,38-41,(2004) G. Hu, C. Zhao, S. Zhang, M. Yang, Z. Wang, Polymer 47, 480, (2006) 碳奈米管/聚胺基甲酸酯複合材料製備及其性質研究-清華大學王崇豪碩士論文,46-47,(2006) M. T. Kortschot, R. T. Woodhams, Polym. Compos. 9, 60, (1988) J. B. Bai, A. Allaoui, Compos. Pt. A-Appl. Sci. Manuf. 34, 689 (2003) J. Sandlera, M. S. P. Shaffera, T. Prasseb, W. Bauhoferb, K. Schultea, A. H. Windlea, Polymer 40, 5967, (1999) M. K. Seo, J. R. Lee, S. J. Park, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 404, 79, (2005) B. K. Zhu, S. H. Xie, Z. K. Xu, Y. Y. Xu, Compos. Sci. Technol. 66, 548, (2006) 抗靜電/導電性材料最新發展趨勢及商業探討,工研院經資中心出 版,經濟部技術處發行,陳怡甄等作,ISBN:9577747744,II.2-3,(2005) 沈永清,導電性塑膠材料,化工資訊,9,6-14,(1998) J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, E. V. Barrera, Nano Lett. 3, 1107, (2003) W. Tang, M. H. Santare, S. G. Advani, Carbon 41, 2779, (2003) H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188, (1998) X. Lu, J. Hay, Polymer 42, 9423, (2001) D. Lorenzo, C. Silvestre, Prog Polym Sci. 24, 917, (1999)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3679-
dc.description.abstract本研究藉由熔融混煉(melt-blending)的方式,將聚琥珀酸丁酯(Poly(butylene succinate))和多壁奈米碳管(multi-walled carbon nanotubes)進行混摻,獲得奈米複合材料。為了增加多壁奈米碳管在複合材料中的分散性,將碳管表面進行化學修飾,首先將多壁奈米碳管浸入HNO3溶液中,進行酸化,使碳管表面帶有羧酸(-COOH)的官能基,然後再加入十八烷醇(Stearyl alcohol),在溫和的條件下,藉由N,N’-二環己基碳二亞胺(N,N’-dicyclohexyl- carbodiimide,DCC)脫水劑脫水,使碳管和十八烷醇之間產生酯基的化學鍵結,改質後的碳管可以分散在acetone、THF、chloroform…等有機溶劑中,結果顯示成功的利用DCC脫水劑完成碳管的改質。再利用簡單的熔融混煉方式製備PBS/CNTs奈米複合材料,對於複材的熱性質、機械性質及導電性質進行探討。結果顯示,CNT-C18可以均勻分散在PBS中,有效的改善複材的熱性質、機械性質及導電性質。添加3 wt %的CNT-C18之複材,在25oC下其儲存模數和損失模數分別提升了120及55 %,5 wt %重量損失之熱裂解溫度提升12.3 °C。在導電性部分,PBS的表面電阻 > 1016 Ω/cm2,而添加3 wt %的CNT-C18之複材,其表面電阻降低 < 107 Ω/cm2,具有抗靜電的效果,未來可用應用在電子包裝材上。zh_TW
dc.description.abstractIn this study, poly(butylene succinate)/multi-walled carbon nanotubes (PBS/CNTs) hybrids were prepared by a melt blending method. In order to enhance the compatibility between PBS and CNT, the surfaces of CNT were chemically modified. CNTs were first pre-treated using acid solution (HNO3) to obtain CNTs functionalized with carboxylic groups. Subsequently, the stearyl alcohol was grafted onto CNT with the assistance of dehydrating agent, N,N'-dicyclohexyl-carbodiimide (DCC). Excellent dispersion in organic solvents such as acetone, THF, and chloroform was found for the modified CNTs (CNT-C18). In addition, the PBS/CNTs nanocomposites were then prepared through simple melt-blending. Mechanical properties, thermal behavior, conductivity of resultant polymer/CNT composites were investigated. The results show that excellent dispersion of nanotubes in the PBS matrices was achieved. Moreover, an improvement in thermal and mechanical properties was also observed. With the addition of 3 wt % of CNT-C18, Td of the nanocomposite was increased up to 12.3 °C. Apart from that, the increments of E' and E” of the nanocomposite at 25 °C were 120 and 55 %, respectively. In the aspect of conductivity, the surface resistivity of the PBS/CNT-C18 composites decreased from > 1016 Ω/cm2 for neat PBS to < 107 Ω/cm2 for the nanocomposites with 3 wt % of CNT-C18. Such PBS/CNT-C18 nanocomposites are highly efficient in anti-static purpose, which can be applied in electronic packaging materials.en_US
dc.description.tableofcontents目錄 一、緒論 1 1.1 前言 1 二、文獻回顧及理論基礎 3 2.1 生物分解性塑膠介紹 3 2.2 Bionolle之簡介 5 2.3 奈米碳管之簡介 9 2.3.1 奈米碳管的發現 9 2.3.2 奈米碳管的結構 10 2.3.3 奈米碳管的合成方法 12 2.3.4 奈米碳管的改質 13 2.4 高分子/奈米碳管複合材料之製備方式 17 2.5 PBS之奈米複合材料 19 2.6 生物可分解性高分子/多壁奈米碳管複合材料 21 2.7 非等溫結晶動力學 25 2.7.1 Avrami方程式 25 2.7.2 Modified Avrami方程式 26 2.7.3 高分子結晶動力學 27 2.8 PBS之生物分解性 30 三、研究動機 34 3.1 研究動機 34 四、實驗內容 36 4.1 實驗流程 36 4.2 實驗藥品 38 4.3 儀器設備 40 4.3.1 分析儀器 40 4.3.2 其他儀器 41 4.4 實驗步驟 42 4.4.1 多壁奈米碳管之改質 42 4.4.2 PBS#1020/多壁奈米碳管複材之製備 43 4.4.3 生物分解性實驗 44 4.6 儀器測試方法及條件 45 五、結果與討論 48 5.1 多壁奈米碳管改質之鑑定 48 5.2 PBS及PBS/CNT-C18複合材料熱性質分析 50 5.3 PBS及PBS/CNT-C18複合材料動態機械分析 54 5.4 PBS及PBS/CNT-C18複合材料導電性質分析 60 5.5 PBS及PBS/CNT-C18複合材料SEM型態學 63 5.6 PBS及PBS/CNT-C18複合材料TEM型態學 65 5.7 PBS及PBS/CNT-C18複合材料非等溫結晶動力學之探討 69 5.8 PBS及PBS/CNT-C18複合材料之生物分解測試 72 六、結論 76 七、參考文獻 79zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407200810111800en_US
dc.subjectmulti-walled carbon nanotubesen_US
dc.subject多壁奈米碳管zh_TW
dc.subjectbiodegradableen_US
dc.subjectpoly(butylene succinate)en_US
dc.subject生物可分解性zh_TW
dc.subject聚琥珀酸丁酯zh_TW
dc.title生物可分解性聚琥珀酸丁酯/多壁奈米碳管複合材料之製備與探討zh_TW
dc.titlePreparation and Properties of Biodegradable Poly(butylene succinate)/Multi-Walled Carbon Nanotube Nanocompositesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.