Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36802
標題: 水稻IR64及TNG67脆性突變品系之外表型鑑定與遺傳分析
Phenotype characterization and genetic analysis of brittle culm mutants of IR64 and TNG67 varieties
作者: 蔡宗翰
Tsai, Tsung-Han
關鍵字: Oryza sativa
水稻
brittle mutant
brittle culm
genetic analysis
脆性突變體
脆稈
遺傳分析
出版社: 農藝學系所
引用: 蔡淑華。1997。植物解剖學。國立編譯館。台北。 Aohara, T., T. Kotake, Y. Kaneko, H. Takatsuji, Y. Tsumuraya, and S. Kawasaki. 2009. Rice BRITTLE CULM 5 (brittle node) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol. 50: 1886-1897. Carpita, N. C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445-476. Chern, C. G., M. J. Fan, S. M Yu, A. L. Hour, P. C. Lu, Y. C. Lin, F. J. Wei, S. C. Huang, S. Chen, M. H. Lai, C. S. Tseng, H. M. Yen, W. S. Jwo, C. C. Wu, T. L. Yang, L. S. Li, Y. S. Li, Y. C. Kuo, S. M. Li, C. P. Li, C. K. Wey, A. Trisiriroj, H. F. Lee, and Y. I. C. Hsing. 2007. A rice phenomics study – phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol. Biol. 65: 427-438. Cosgrove, D. J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6: 850-861. Darley, C. P., A. M. Forrester, and S. J. McQueen-Mason. 2001. The molecular basis of plant cell wall extension. Plant Mol. Biol. 47: 179-195. Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA miniprepration: version II. Plant Mol. Biol. Rep. 1: 19-21. Duan, Z. Q., J. M. Wang, L. Bai, Z. G. Zhao, and K. M. Chen. 2008. Anatomical and chemical alterations but not photosynthetic dynamics and apoplastic transport changes are involved in the brittleness culm mutation of rice. J. Integr. Plant Biol. 50: 1508-1517. Herth, W. 1983. Arrays of plasma-membrane ‘rosettes’ involved in cellulose microfibril formation in spirogyra. Planta 159: 347-356. Hirano, K., T. Kotake, K. Kamihara, K. Tsuna, T. Aohara, Y. Kaneko, H. Takatsuji, Y. Tsumuraya, and S. Kawasaki. 2010. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta 232: 95-108 Hirochika, H., E. Guiderdoni, G. An, Y. Hsing, M. Y. Eun, C. Han, N. Upadhyaya, S. Ramachandran, Q. Zhang, A. Pereira, V. Sundaresan, and H. Leung. 2004. Rice mutant resources for gene discovery. Plant Mol. Biol. 54: 325-334. IRGSP. 2005. The map-based sequence of the rice genome. Nature 436: 793-800. Izawa, T. and K. Shimamoto. 1996. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci. 1: 95-99. Johnson, S. E., O. R. Angeles, D. S. Bara, and R. J. Buresh. 2006. Faster anaerobic decomposition of a brittle straw rice mutant: implications for residue management. Soil Biol. Biochem. 38: 1880-1892. Li, Y., Q. Qian, Y. Zhou, M. Yan, L. Sun, M. Zhang, Z. Fu, Y. Wang, B. Han, X. Pang, M. Chen, and J. Li. 2003. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15: 2020-2031. McCouch, S. R., X. Chen, Q. Panaud, S. Temnykh, Y. Xu, Y. G. Cho, N. Huang, T. Ishii, and M. Blair. 1997. Microsatellite marker development, mapping and application in rice genetics and breeding. Plant Mol. Biol. 35: 89-99. McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and mapping of 2240 new SSR markers for rice. DNA Research 9: 199-207. Ni, J., P. M. colowit, and D. J. Mackill. 2002. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci. 42: 601-607. Qian, Q., L. Yunhai, Z. Dali, T. Sheng, W. Zhengke, L. Xueyong, D. Zhigang, D. Ning, S. Lei, and L. Jiayang. 2001. Isolation and genetic characterization of a fragile plant mutant in rice (Oryza sativa L.). Chin. Sci. Bull. 46: 2080-2085. Powell, W., G. C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222. Reiter, W. D. 2002. Biosynthesis and properties of the plant cell wall. Curr. Opin. Plant Biol. 5: 536-542. Singh, K., D. S. Multani, and G. S. Khush. 1994. A new brittle culm mutant in rice. Rice Genet. Newsl. 12: 91-92. Sundaram, R. M., B. Naveenkumar, S. K. Biradar, S. M. Balachandran, B. Mishra, M. IlyasAhmed, B. C. Viraktamath, M. S. Ramesha, and N. P. Sarma. 2008. Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. Euphytica 163: 215-224. Tanaka, K., K. Murata, M. Yamazaki, K. Onosato, A. Miyao, and H. Hirochika. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133: 73-83. Taylor, N. G., S. Laurie, and S. R. Turner. 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: 2529-2540. Temnykh, S., W. D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y. G. Cho, T. Ishii, and S. R. McCouch. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697-712. Turner, S. R., N. Taylor, and L. Jones. 2001. Mutations of the secondary cell wall. Plant Mol. Biol. 47: 209-219. Wang, C. S., T. H. Tseng, and C. Y. Lin. 2002. Rice biotech research at the Taiwan Agriculture Research Institute. APBN. 6: 950-956. Wu, J. L., C. Wu, C. Lei, M. Baraoidan, A. Bordeos, M. R. S. Madamba, M. Ramos-Pamplona, R. Mauleon, A. Portugal, V. J. Ulat, R. Bruskiewich, G. Wang, J. Leach, G. Khush, and H. Leung. 2005. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59: 85-97. Xu, J. D., Q. F. Zhang, T. Zhang, H. Y. Zhang, P. Z. Xu, X. D. Wang, and X. J. Wu. 2008. Phenotypic characterization, genetic analysis and gene-mapping for a brittle mutant in rice. J. Integr. Plant Biol. 50: 319-328. Yan, C., S. Yan, X. Zeng, Z. Zhang, and M. Gu. 2007. Fine mapping and isolation of bc7(t), allelic to OsCesA4. J. Genet. Genomics 34: 1019-1027. Zhang, H., J. Sun, M. Wang, D. Liao, Y. Zeng, S. Shen, P. Yu, P. Mu, X. Wang, and Z. Li. 2006. Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Genome 50: 72-83. Zhang, B., L. Deng, Q. Qian, G. Xiong, D. Zeng, R. Li, L. Guo, J. Li, and Y. Zhou. 2009. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 71: 509-524. Zhang, M., B. Zhang, Q. Qian, Y. Yu, R. Li, J. Zhang, X. Liu, D. Zeng, J. Li, and Y. Zhou. 2010. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell cycle progression and wall properties in rice. Plant J. 63: 312-328. Zhang, B., and Y. Zhou. 2011. Rice brittleness mutants: a way to open the ‘black box’ of monocot cell wall biosynthesis. J. Integr. Plant Biol. 53: 136-142. Zhou, Y., S. Li, Q. Qian, D. Zeng, M. Zhang, L. Guo, X. Liu, B. Zhang, L. Deng, X. Liu, G. Luo, X. Wang , and J. Li. 2009. BC10, a DUF266-dontaining and Golgi-located type II membrane protein, is required for cell wall biosynthesis in rice (Oryza sativa L.). Plant J. 57: 446-462.
摘要: 水稻(Oryza sativa L.)為世界上重要的糧食作物,亦是功能性基因體學研究的單子葉模式作物。作物的機械強度(mechanical strength)為一重要的農藝性狀,機械強度不足的作物容易造成倒伏或折斷,嚴重影響作物生長、發育與產量。本研究依手折植株葉片及稻稈的斷裂程度建立水稻脆度判定系統,將脆性程度區分為不脆(0)、微脆(1)、中脆(3)與極脆(5)四個等級。在M1到M4世代由疊氮化鈉(NaN3)誘變處理秈稻IR64品種的突變體庫,篩選出13株具脆性的突變體。在M9世代脆性突變庫中,共有9個品系具有等級5的脆度,2個品系脆度3,2個品系具有輕微脆度。以M5世代純化的兩個脆性品系IRB3(株型正常、脆度3)與IRB12(株型矮小、脆度5)之葉片及稻稈為材料,以石蠟切片進行分析,脆性突變體IRB3、IRB12之葉脈維管束間距離較IR64短,bulliform細胞寬度亦較IR64短;稻稈橫切結果顯示,IR64稻稈維管束間距離及稻稈厚度皆比脆性品系大。以非脆性品種TNG67為母本,與具脆性之父本IRB3雜交,進行遺傳分析,以SSR多型性分子標誌確認F1真偽。F1皆不具明顯脆性,在最高分蘗期進行F2族群之稻稈及葉片的脆度判定,將脆度觀測值進行卡方檢定,χ2值分別為1.673及0.956,不脆:脆之分離比均符合3:1,說明突變品系IRB3之脆性性狀由單一隱性基因控制。 在稉稻台農67號之疊氮化鈉突變庫中,挑選出12個脆性純系,鑑定其外表型特徵,並進一步挑選四個脆性純系:SA1067、SA1551、SA1566與SA1610分別與TNG67雜交產生F2族群,進行脆性之遺傳分析。結果顯示此四個脆性突變品系,均為單一隱性基因所遺傳。將四個脆性品系兩兩雜交進行對偶性測驗,結果顯示,SA1551/SA1610之F1與F2皆具脆性特性,應為相同基因座之突變;SA1067/SA1551、SA1067/SA1610、SA1551/SA1566與SA1566/SA1610之F1皆不具脆度,F2族群稻稈及葉片之不脆:脆的比例符合9:7,顯示SA1067與SA1551;SA1067與SA1610;SA1566與SA1551;SA1566與SA1610品系均具互補性,推論由不同的基因調控脆性性狀。
The mechanical strength of crop is an important agronomic trait, less mechanical strength makes lodging or breaking of plants and results in tremendous yield loss. Four brittle levels of leaves or culms were defined as 0 (non-brittleness), 1 (slight), 3 (moderate) and 5 (extreme) according to the cracking point by hand-bending in this study. Accordingly, 13 brittle mutants were screened during M1 to M4 generations from the indica type mutant pool of IR64 variety developed by sodium azide mutagenesis. Finally, 9 mutants with level 5, 2 mutant with level 3, and 2 mutants with level 1 brittleness respectively, were obtained at the M9 generation. Two pure lines, IRB3 (normal plant type, level 3 brittleness) and IRB12 (dwarf, level 5 brittleness), were selected in M5 for anatomical analysis. The results showed that the distance between vascular bundles of mutants were shorter than of IR64 ones and the brittle mutants also had less width in bulliform cell in leaf. Similarly, in the culm of brittle mutants, shorter distance between vascular bundles and thickness of cell wall were also observed than of IR64 ones. The IRB3 mutant was crossed with TNG67 to investigate the inheritance of brittleness. Their hybrids were screened by polymorphic SSR markers and no brittleness was found in F1. The brittleness of leaf and culm in the F2 population were determined and Chi-squared analysis analyzed, the results displayed that the brittleness of IRB3 was governed by a single recessive gene. Twelve pure brittle mutants were selected from a japonica mutant pool of TNG67 variety. Four lines, SA1067, SA1551, SA1566 and SA1610, were crossed with TNG67 and processed to F2. The genetic analysis suggested that the brittleness of these mutants were controlled by a single recessive gene. Allelic test was conducted by crossing between mutants and the brittleness of plants was investigated. All the F2 of SA1551/SA1610 showed brittle culms indicated that they were mutated at the same locus. However, the non-brittle vs. brittle ratio of F2 populations in the crosses of SA1067/SA1551, SA1067/SA1610, SA1551/SA1566 and SA1566/SA1610 fitted 9:7 suggested that the brittleness trait of these mutants were mutated or controlled by different genes. Molecular investigation of these mutants will provide valuable information for sodium azide mutagenesis as well as the applications.
URI: http://hdl.handle.net/11455/36802
其他識別: U0005-1908201111453700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201111453700
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.