Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36820
標題: 水稻T-DNA插入突變體抗固殺草之生理機制
Physiological mechanism of glufosinate resistance for T-DNA insertion mutants of rice
作者: 蕭詩軒
Hsiao, Shi-Xuan
關鍵字: glufosinate
麩胺酸合成酶
glutamine synthetase
出版社: 農藝學系所
引用: 伍、參考文獻 農林廳。2002。植物保護手冊。台灣省政府農林廳編印。南投。台灣。 Anderson, D. M., C. J. Swanton, J. C. Hall, and B. G. Mersey. 1993. The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res. 33:139-147. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. König, and H. Zähner. 1972. Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und phosphinothricyl - Alanyl - Alanin. Helv. Chim. Acta. 55:224-239. Bradshaw, L. D., M. Barrett, and C. G. Poneleit. 1994. Inheritance of bentazon susceptibility in a corn (Zea mays) line. Weed Sci. 42:641-647. Cao, J., X. L. Duan, D. McElroy, and R. Wu. 1992. Regeneration of herbicide resistant transgenic rice plants following microprojectile mediated transformation of suspension culture cells. Plant Cell Rep. 11:586-591. Coetzer, E. and K. Al-Khatib. 2001. Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Sci. 49:454-459. Coetzer, E., K. Al-Khatib, and D. E. Peterson. 2002. Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean (Glycine max). Weed Technol. 16:326-331. Coetzer, E., K. Al-Khatib, and T. M. Loughin. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 49:8-13. D’Halluin, K., M. DeBlock, J. Janssens, J. Leemans, A. Reynaerts, and J. Botterman. 1992. The bar gene as a selectable marker in plant engineering. Method. Enzymol. 216:415-441. Downs, C. G., M. C. Christey, D. Maddock, J. F. Seelye, and D. G. Stevenson. 1994. Hairy roots of Brassica napus: I. Applied glutamine overcomes the effect of phosphinothricin treatment. Plant Cell Rep. 14:37-40. Dröge, W., I. Broer, and A. Pühler. 1992. Transgenic plants con -taining the phosphinothricin-N-acetyl-transferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142-151. Dröge-Laser, W., U. Siemeling, A. Pühler, and I. Broer. 1994. The metabolites of the herbicide L-phosphinothricin (glufosinate). Plant Physiol. 105:159-166. Gelvin, S. B., 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 223-256. Hirel, B. and P. Gadal., 1982. Glutamine synthetase isoforms in leaves of a C4 plant: Sorghum vulgare. Physiol. Plant. 54:69-74. Hurst, P. L., G. A. King, and W. M. Borst. 1993. Postharvest inhibition of glutamine synthetase activity with phosphino- thricin reduces the shelf-life of asparagus. Posth Biol. Tech. 3:327-334. Izawa, S. 1977. Inhibitors of electron transport. In A. Trebst and M. Avron, (eds). Encyclopaedia of Plant Phsyiology, Berlin: Springer. pp. 266-282. Jansen, C., I. Schuphan, and B. Schmidt. 2000. Glufosinate meta -bolism in excised shoots and leaves of twenty plant species. Weed Sci. 48:319-326. Krysan, P. J., Young, J. C., and Sussman, M. R. 1999 T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290. Krieg, L. C., M. A. Walker, T. Senaratna, and B. D. McKersie. 1990. Growth, ammonia accumulation and glutamine synthetase activity in alfalfa (Medicago sativa L.) shoots and cell cultures treated with phosphinothricin. Plant Cell Rep. 9:80-83. Lacuesta, M., B. Gonzàlez-Moro, C. González-Murua, and A. Muńoz-Rueda. 1993. Time-course of the phosphinothricin effect on gas exchange and nitrate reduction in Medicago sativa. Physiol. Plant. 89:847-853. Lea, P. J., K. W. Joy, J. L. Ramos, and M. G. Guerrero. 1984. The action of the 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:1-6. Lea, P. J. and S. M. Ridley. 1989. Glutamine synthetase and its inhibition. In: A. D. Dodge, (ed). Herbicides and Plant Metabolism. Cambridge: University Press, Societyof Expe -rimental Biology Seminar Series 38. pp.137-170. Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105:450-458. Mersey, B. G., J. C. Hall, D. M. Anderson, and C. J. Swanton. 1990. Factors affecting the herbicidal activity of glufosinate -ammonium: absorption, translocation, and metabolism in barley and green foxtail. Pestic. Biochem. Physiol. 37:90-98. Palmer, C. E. and M. Oleck. 1992. The relationship of phosphinothricin to growth and metabolism in cell cultures of Brassica napus L. J. Plant Physiol. 141:105-110. Pline, W. A., J. Wu, and K. K. Hatzios. 1999. Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Sci. 47:636-643. Pornprom, T., J. Chompoo, and B. Grace. 2003. Glufosinate tolerance in hybrid corn varieties based on decreasing ammonia accumulation. Weed Biol. Manage. 3:41-45. Pornprom, T., S. Surawattananon, and P. Srinives. 2000. Ammonia accumulation as an index of glufosinate-tolerant soybean cell lines. Pestic. Biochem. Physiol. 68:102-106. Price, C. E. 1983. The effect of environment on foliage uptake and translocation of herbicides. In J. L. P. Van Oorshot, ed. Aspects of Applied Biology 4. Influence of environmental factor on herbicide performance and crop and weed biology. Wellesbourne, UK. pp.157-169. Prasertsongskunp, S. N., Suwamwong, S., Santisopasri, V., and H. Matsumoto. 2002. Increased activity and reduced sensitivity of glutamine synthetase in glufosinate- resistant vetiver (Vetiveria zizanioides Nash) cells. Weed Biol. Manage. Vol 2, Issue 4: 171–176 Ridley, S. M. and Mcnally, S. F. 1985. Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to the herbicide. Plant Sci. 39: 31-36. Sankula, S., M. P. Braverman, F. Jodari, S. D. Linscombe, and J. H. Oard. 1997a. Evaluation of glufosinate on rice (Oryza sativa) transformed with the BAR gene and red rice (Oryza sativa). Weed Technol. 11:70-75. Sankula, S., M. P. Braverman, and S. D. Linscombe. 1997b. Response of BAR-transformed rice (Oryza sativa) and red rice (Oryza sativa) to glufosinate application time. Weed Technol. 11:303-307. Sauer, H., A. Wild, and W. Rühle. 1987. The effect of phosphinothricin (glufosinate) on photosynthesis. II. The causes of inhibition of photosynthesis. Z. Naturforsch. 42:270-287. Seelye, J. F., W. M. Borst, G. A. King, P. J. Hannan, and D. Maddocks. 1995. Glutamine synthetase activity, ammonium accumulation and growth of callus cultures of Asparagus officinalis L. exposed to high ammonium or phosphinothricin. J. Plant Physiol. 146:686-692. Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-logistic analysis of herbicide dose-response relationship. Weed Technol. 9:218-227. Shiboleth, Y. M., Arazi, T., Wang, Y. and A. Gal-On., 2001. A new approach for weed control in a cucurbit field employing an attenuated potyvirus-vector for herbicideresistance. J. Biotechnol. 92:37-46. Skora Neto, F., H. D. Coble, and F. T. Corbin. 2000. Absorption, translocation, and metabolism of 14C-glufosinate in Xanthium strumarium, Commelina diffusa, and Ipomoea purpurea. Weed Sci. 48:171-175. Smith, A. E. 1989. Transformation of the herbicide [14C]glufosinate in soils. J. Agric. Food Chem. 37:267-271. Steckel, G. J., L. M. Wax, F. W. Simmons, and W. H. Phillips II. 1997a. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol. 11:484-488. Steckel, G. J., S. E. Hart, and L. M. Wax. 1997b. Absorption and translocation of glufosinate on four weed species. Weed Sci. 45:378-381. Strauch, E., W. Wohlleben, and A. Pühler. 1988. Cloning of the phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tü 494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65-74. Thompson, C. J., R. N. Movva, R. Tizard, R. Crameri, J. E. Davies, M. Lauwereys, and J. Bottermann. 1987. Characterization of the herbicide-resistance gene bar form Streptomyces hygrosc -opicus. EMBO J. 9:2519-2523. Tsai, C. J., C.S. Wang and C. Y. Wang. 2006. Physiological characteristics of glufosinate resistance in rice. Weed sci.49:(in press) Ullrich, W. R., C. I. Ullrich-Eberius, and H. Köcher. 1990. Uptake of glufosinate and concomitant membrance potential changes in Lemnagibba G1. Pestic. Biochem. Physiol. 37:1-11. Vasil, V., Castillo, A. M., Fromm, M. E. and Vasil, I. K. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/ Technol. 10: 667-674. Vincent1 R., V. Fraisier, S. Chaillou, M. A. Limami1, E. Deleens, B. Phillipson, C. Douat, J. P. Boutin1, and B. Hirel., 1997. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201: 424-433 Wohlleben, W., W. Arnold, I. Broer, D. Hillemann, E. Strauch, and A. Pühler. 1988. Nucleotide sequence of the phosphinothricin -N-acetyl-transferase gene from Streptomyces viridochromo- genes Tü 494 and its expression in Nicotiana tabacum. Gene 70:25-37. Wendler, C., M. A. Putzer, and A. Wild. 1992. Eeffect of phosphinothricin (glufosinate) and inhibitors of photo- respiration on photosynthesis and Ribulose-1,5-bisphosphate carboxylase activity. J. Plant Physiol. 139:666-671. Wendler, C., M. Barniske, and A. Wild. 1990. Effect of phosphinothricin (glufosinate) on photosynthesis and photo respiration of C3 and C4 plants. Photosyn. Res. 24:55-61. Wild, A., H. Sauer, and W. Ruhle. 1987. The effect of phos phinothricin (glufosinate) on photosynthesis I. Inhibition of photosynthesis and accumulation of ammonia. Z. Naturforsch. 42:263-269. Wild, A. and C. Ziegler. 1989. The effect of bialaphos on ammonium-assimilation and photosynthesis. I. Effect on the enzymes of ammonium assimilation. Z. Naturforsch 44:97-102 [WSSA] Weed Sci. Soc. of America. 1994. Herbicide Handbook. 7th ed. In Weed Sci. Soc. of America. Champaign, IL. pp. 147-149. [WSSA] Weed Sci. Soc. of America. 2002. Herbicide Handbook. 8th ed. In: Weed Sci. Soc. of America. Champaign, IL. pp. 229-230. Zhou, H., Stiff, C. M., and Konzak, C. F. 1993. Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Rep. 12: 612-616. Ziegler, C. and A. Wild. 1989. The effect of bialaphos on ammonium-assimilation and photosynthesis. II. Effect on photosynthesis and photorespiration. Z. Naturforsch 44:103-108.
摘要: 本研究利用水稻T-DNA插入突變庫之抗性品系084-5-1-1(R)與感性品系283-0-4(S),並配合富士光(FSK)為對照,探討固殺草之抗性生理機制。根據劑量反應分析與處理7.54 mM 固殺草7天後的存活率,顯示084-5-1-1(R)表現較佳的抗性。於利用14C-glufosinate標定後48小時,發現在固殺草的吸收轉運上,各品系間並無明顯差異。但084-5-1-1(R)具有較高之代謝能力,其代謝物主要是MPP。研究發現噴施固殺草之後,初期084-5-1-1(R)植體內GS酵素(GS; EC 6.3.1.2)維持較高的活性且受抑制程度較低,且24小時後銨累積量亦較低。根據酵素動力學分析,084-5-1-1(R)品系於細胞液內的GS有較高之Ki值,顯示對於固殺草親和力降低,此可能有助於其抗性。
The physiological basis of glufosinate resistance for the rice mutants derived from T-DNA insertion-induced mutant pool, resistant (R) line 084-5-1-1(R) , as compared with susceptible (S) mutant line 283-0-4 (S) and a reference variety FSK, was studied. Based on the dose-response analysis and survival rate of 4-leaf rice seedlings 7 days after treatment with 7.54 mM glufosinate, mutant line 084-5-1-1(R) expressed a higher resistante to glufosinate. A 14C-glufosinate feeding experiment showed no difference among 3 rice lines in both uptake and translocation of glufosinate. However, a higher glufosinate metabolism in R line 084-5-1-1 was found. In addition, in vivo activity of glutamine synthetase (GS; EC 6.3.1.2) in R line was higher and it was decreased slowly at the beginning after glufosinate treatment. Due to the higher Ki value to glufosinate for the cytosolic GS based on the enzymatic kinetic analysis, the decreased affinity of cytosolic GS to glufosinate could partially account for the glufosinate resistance in R line 084-5-1-1(R) from T-DNA insertion mutants. It is suggested that both a higher metabolism of glufosinate and a lower affinity of cytosolic GS to glufosinate are main factors to resistant glufosinate.
URI: http://hdl.handle.net/11455/36820
其他識別: U0005-2706200614005500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706200614005500
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.