Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36823
標題: 固殺草降解性土壤微生物之篩選與鑑定
Screening and identification of glufosinate-degrading bacterium
作者: 蕭巧玲
Hsiao, Chau-Ling
關鍵字: Glufosinate
固殺草
degrading
bacterium
降解
細菌
出版社: 農藝學系所
引用: Bremner, J. M. 1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen, nitrogen availability indexes. In C. A. Black et al. (ed.) Methods of soil analysis, Part 2, Agro- nomy 9: 1149-1255, 1324-1348. Am. Soc. Of Agron. Inc., Madison, Wis. Handbook on reference method for soil testing. 1980. The council on soil testing and plant analysis university of Georgia. Revesed Edition. Anthens. Georgia. pp. 37-51. Green, R. E. 1974. Pesticide-clay-water interactions. In: Guenzi, W. D. (ed.) Pesticides in soil and water. Soil science society of America, Inc. Madison, Wisconsin. Mac Faddin, J. F. 1980. Biochemical tests for identification of medium bacteria. 2d ed. Baltimore. Williams & Wilkins Co. pp. 1-308. Subba Rao, N. S. 1982. Biofertilizers in agriculture. Rotterdam. A. A. Balkema. pp. 181. Ahmad, I., J. Bissett, and D. Malloch. 1995. Influence of the bioher- bicide phosphinothricin on interactions between phytopatho- gens and antagonists. Can. J. Bot. 173: 1750-1760. Ahmad, I., and D. Malloch. 1995. Interaction of soil microflora with the bioherbicide phosphinothricin. Agric. Ecosys. Environ. 54: 165-174. Ahmad, I., J. Bissett, and D. Malloch. 1995. Effect of phosphino- thricin on nitrogen metabolism of Trichoderma species and its implications for their control of phytopathogenic fungi. Pestic. Biochem. Physiol. 53: 49-59. Aislabie, J., A. J. Bej, J. Ryburn, N. Lloyd, and A. Wilkins. 2005. Characterization of Arthrobacter nicotinovorans HIN, an atra- zinedegrading bacterium, from agricultural soil New Zealand. FEMS microbiol. ecol. 52: 279-286. Amann, R., W. Ludwig, and K. H. Schlerfer. 1994. Identification of uncultured bacteria: a challenging task for molecular taxo- nomists. ASM News 60: 360-365. Bagwell, C. E., Y. M. Piceno, A. Ashburne-Lucas, and C. R. Lovell. 1998. Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses. Appl. Environ. Microbiol. 64: 4276-4282. Balack, B. D., J. S. Russin, J. L. Griffin, and J. P. Snow. 1996. Herbicide effect on Rhizoctonia solani in vitro and Rhizoctonia solani foliar blight of soybean (Glycine max). Weed Sci. 44: 711-716. Bartsch, K., and C. C. Tebbe. 1989. Initial steps in degradation of phosphinothricin (glufosinate) by soil bacteria. Appl. Environ. Microbiol. 55: 711-716. Bayer, E., K. H. Gugel, K. Hägele, H. Hagenmaier, S. Jessipow, W. A. König, and H. Zähner. 1972. Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und phosphino-thricyl- Alanyl-alanin. Helv. Chim. Acta. 55: 224-239. Behrendt, H., M. Matthies, H.Gildemeister, G. Gorlitz. 1990. Lesching and transformation of glufosinate-ammonium and its main metabolite in a layered soil column. Environ. Toxicol. Chem. 9: 541-549. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence fof a 16S rDNA ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. 75: 4801- 4805. Brown, B. J., and L. G. Leff. 1996. Comparison of fatty acid methyl ester analysis with the use of API 20E and NFT strips for identification of aquatic bacteria. Appl. Environ. Microbiol. 62: 2183-2185. Boethling, R. S., and M. Alexander. 1979. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl. Environ. Microbiol. 37: 1211-1216. Bujacz, B., P. Wieczorek, T. Krzyško-Lupicka, Z. Golab, B, Lejczak, and P. Kavfarski. 1995. Organophsphonate utilization by the wild-type strain of Pencillium notatum. Appl. Environ. Micro- biol. 61: 2905-2910. Castillo, M. del P., S. von Wirén-Lehr, I. Scheunert, and L. Torstensson. 2001. Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol. Fertil. Soils. 33: 521-528. Caterino, M. S., S. Cho, and F. A. H. Sperling. 2000. The current state of insct molecular systematics: a thriving tower of babel. Annu. Rev. Entomol. 45: 1-54. Chen, Y. L. and T. C. Wu. 1978. Degradation of herbicide butachlor by soil microbes. J. Pesticide Sci. 3: 411-417. Cullimore, D. R. 1971. Interaction between herbicides and soil microorganisms. Residue Rev. 35: 65-80. Cullington, J. E., and A. Walker. 1999. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil biol. biochem. 31: 677-686. Donnelly , P. K., and D. L. Crawford. 1993. Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentration in vitro. Appl. Environ. Microbiol. 59: 2642-2647. Dröge-Laser, W., I. Broer, and A. Pühler. 1992. Transgenic plants containing the phosphinothricin-N-acetyl-transferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plant. Planta 187: 142-151. Edwards, U., T. Rogall, H. Blocker, M. Emde, and E. C. Bottger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. Ei-Fantroussi, S. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66: 5110-5115. Fall Ray, R. 1976. Stabilization of an acetyl-coenzyme a carboxy- lase complex from Pseudomonas citronellolis. Biochimica et Biophysica Acta (BBA). 450: 475-480. Fang, M., R. J. Kremer, P. P. Motavalli, and G. Davis. 2005. Bacte- rial diversity in rhizospheres of nontransgenic and transgenic corn. Appl. Environ. Microbiol. 71: 4132-4136. Franco, A. R., F. J. Lopez-siles, and J. Cardenas. 1996. Resistance to phosphinothricin (glufosinate) and its utilization as a nitrogen source by Chlamydomonas reinhardtii. Appl. Environ. Microbiol. 62: 3834-3839. Fonnelly, P. K., J. A. Entry, and D. L. Crawfird. Degradation of atra- zine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl. Environ. Microbiol. 59: 2642-2647. Forlani, G., A. Mangialli, E, Nielsen, and C. M. Suardi. 1999. De- gradation of the phosphnate herbicide glyphosate in soil: evidence for a passable involvement of unculturable microorganisms. Soil biol. biochem. 31: 991-997. Grimont, P. A. D., and F. Grimont. 1978. Biotyping of Serratia marcescens and its use in epidemiological studies. J. Clin. Microbiol. 8: 73-83. Gyamfi, S., U. Pfeifer, M. Stierschneider, and A. Sessitsch. 2002. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomanas communities in the rhizosphere. FEMS microbiol. ecol. 41: 181-190. Hauser, E., P. Kampfer, and H. J. Busse. 2004.Pseudomonas psychrotolerans sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1633-1637. Joy, K. M. 1988. Ammonia, glutamine, and asparagine: a carbon- nitrogen interface. Can. J. Bot. 66: 2103-2109. Leason, M., D. Cunliffe, D. Parkin, P. J. Lea, and B. J. Miflin. 1982. Inhibition of pea leaf glutamine synthetase by methionine sulfoxime, phosphinothricin and other glutamine analogues. Phytochemistry 21: 855-857. Liu, C. A., J. Vargas, D. Penner, and M. Sticklen. 1998. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate- resistant creeping bentgrass (Agrostis palustris). Weed Sci. 46: 139-146. Liu, W. T., and D. A. Stahl. 2002. Molecular approaches for the measurement of density, diversity, and phylogeny. P. 114-134. In: Hurst, C. J., R. L. Crawford, G. R. Knudsen, M. J. McInernsy, and L. D. Stetzenbach (ed.), Manual of environ- ment microbiology, 2nd ed., ASM Press, Washington, D. C. Loxdale, H. D., and G. Lushai. 1998. Molecular markers in entomology Bull. Entomol. Res. 88: 577-600 Lynch M., and B. G. Milligan.1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. Kriete, G., and I. Broer. 1996. Influence of the herbicide phosphino- thricin on growth and nodulation capacity of Rhizobium meliloti. Appl. Microbiol. Biotechnol. 46: 580-586. Krishnan, H. B., K. Y. Kim, and A. H. Krishnan. 1999. Expression of a serratia marcescens chitinasa gene in sinorhizobium fradii USDA191 and Sinorhizobium melioti RCR2011 impedes soybean and alfalfa nodulation. Mol. Plant Microbe. Interact. 12: 748-751. Krzysko-Lupicka, T., W. Strof, K. Kubs, M. Skorupa, P. Wieczorek, B. Lejczak, and P. Kafarski. 1997. The ability of soil-born fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl. Microbiol. Biotechnol. 48: 549-552. Master, E. R., and W. W. Mohn. 1998. Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphen- yls at low temperatures. Appl. Environ. Microbiol. 64: 4823-4829. McEwen, F. L., and G. R. Stephenson. 1979. The use and signify- cance of pesticides in the environment; Wiley: Toronto, Onator., Canada. Moshier, F. J., and D. Penner. 1978. Factors influencing microbial degradation of 14C-glyphosate to 14CO2 in soil. Weed Sci. 26: 686-691. Muyzer, G., E. C. Dewall, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16S rDNA. Appl. Enciron. Microbiol. 59: 695-700. Myers, R. M., T. Maniatis, and L. S. Lerman. 1987. Detertion and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155: 501-527. Omura, S., Y. Iwai, and Y. Takahashi. 1979. Herbimycin, a new antibiotic produced by a strain of streptomyces. J. Antibio. 32: 255-261. Pline, W. A., G. H. Lacy, V. Stromberg, and K. Hatzios. 2001. Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae Pathovar. glycinea. Pestic. Biochem. Physiol. 71: 48-55. Prado, A. G. S., and C. Airoldi. 2001. Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical Brazilian red Latosol soil. Thermochim. Acta. 371: 169-174. Rousseaux, S., A. Hartmann, and G. Soulas. 2001. Isolation and characterization of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol. 36: 211-222. Sancho, J. V., F. Hernández, F. J. López, E. A. Hogendoorn, E. Dijkman, and P. van Zoonen. 1996. Rapid determination of glufosinate, glyphosate and aminomethylphosphonic acid in environmental water sample using precolumn fluorogenic labeling and coupled-column liquid chromatography. J. Chromatogr. A 737: 75-83 Schwartz, D., S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, and W. Wohlleben. 2004. Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tü494. Appl. Environ. Microbiol. 70: 7093-7102. Smith, A. E. 1989. Transformation of the herbicide [14C] glufosinate in soil. J. Agric. Food Chem. 37: 267-271. Tada, T., H. Kanzaki, E. Norita, H. Uchimiya, and I. Nakamura.1996. Decreased symptoms of rice blast disease on leaves of bar-expressing transgenic rice plants following treatment with bialaphos. MPMI 9: 762-764. Tebbe C. C., and H. H. Reber. 1988. Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl. Environ. Microbiol. 29: 103-105. Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as evaluated by most-probale-num- ber count and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragment. Appl. Environ. Microbiol. 62: 1405-1415. Topp, E., H. Zhu, S. M. Nour, S. Houot, M. Lewis, and D. Cuppels. 2000. Characterization of an atrzine-degrading Pseudaminbacter sp. Isolated from Canadian and French agricultural soil. Appl. Environ. Microbiol. 66: 2773-2782. Uchimiya, H., M. Iwata, C. Nojiri, P. K. Samarajeewa, S. Taka- matsu, S. Ooba, H. Anzai, A. H. Christensen, P. H. Quail, and S. Toki. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technol. 11: 835-836. Van Soestbergan, A. A., and C. H. Lee. 1969. Pour plate or streak plates. Appl. Microbiol. 18: 1092. Vorgias, C. E., A. Perrakia, and I. Tews. 1996. Structure-function studies on the chitinolytic enzymes of Serratia marrcesscens chitinase and chitobiase. Ann. N. Y. Acad. Sci.799: 190-192. Vucetich, L. M., J. A. Vuchtick, C. P. Joshi, T. A. Waite, and R. O. Peterson. 2001. Genetic (RAPD) diversity in Peromyscus maniculatus population in a naturally fragmented landscape. Mol. Ecol. 10: 35-40. Wang, Y. S., H. S. Tsai, and Y. L. Chen. 1991. Mineralization and metabolism of herbicide isouro in aqueous environment. J. Pesticide Sci. 16: 19-25. Watts, D., and J. R. MacBeath. 2001. Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. Methods Mol. Biol. 167: 153-170. Woo, C. Y., A. M. Fung, S. K. P. Lau, S. S. Y. Wong, and K. Y. Yuen. 2001. Group G Beta-Hemolytic streptococcal bacteria characterized by 16S ribosomal RNA gene sequencing J. Clin. Microbiol. 39: 3147-3155. Yu, Y. L., Y. X. Chen, Y. M. Luo, X. D. Pan, Y. F. He, and M. H. Wong. 2003. Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere. 50: 771-774. http://www.biomerieux.com BioMerieux Inc. http://www.dsmz.de Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ). http://www.ncbi.nih.gov/ National Center for Biotechnology Information (NCBI)
摘要: 本研究自中興大學北溝(BG)農場、台中縣霧峰(WF)與南投縣埔里(PL)農地等土壤分別利用固殺草(glufosinate)短期誘導(SI)及長期誘導(LI)耐性菌種後,篩選其中可降解固殺草之微生物。培養之微生物經分離、純化與16S rDNA鑑定所篩選出之PL014、BG007-1、WF004-1 與PL016等菌株,分別判定為Burkholderia sacchari 、Pseudomonas citronellolis、Pseudomonas psychrotolerans與Serratia marcescens。降解測試發現,四菌株於6.28 mM 固殺草處理下,降解能力大小依序為PL016 (S. marcescens)、WF004-1 (P. psychrotolerans)、PL014 (B. sacchari)及BG007-1 (P. citronellolis)。研究結果顯示長期連續性使用固殺草之環境下較易取得分解能力高之菌株,且配合高量固殺草下所篩選之菌株較具降解力。此外,選出之三菌株於滅菌土壤中經培養7天後發現,可顯著降解固殺草,表現其高降解活性,然而於不滅菌土壤中因有其他土壤微生物也參與固殺草降解,使得三菌株降解活性之表現相對減低。本研究利用變性梯度膠體電泳(denaturing gradient gel eletrophoresis)偵測土壤於外加菌種及固殺草後的菌相變化,研究發現經在固殺草施用下,外加特定之菌株於土壤培養後21天,除了P. citronellolis無法偵測外,其餘二菌株皆能於土壤中穩定生長。此外,土壤菌相中之菌群互有消長,出現之菌群多以GC鹼基含量較高的菌群,本研究顯示特定菌種未明顯影響土壤原生菌種之生存。
Glufosinate-degrading bacteria were screened from the soils with or without experience of glufosinate application. After isola- tion and purification of edaphic microbes, coupled with 16S rDNA analysis, 4 strains, i.e., PL014, BG007-1, WF004-1 and Pl016, more tolerant to glufosinate were Burkholderia sacchari, Pseudomonas citronellolis, Pseudomonas psychrotolerans, and Serratia marcescens, respectively. Under the 6.28 mM glufosinate treatment, the degradation abilities of 4 strains were Pl016 > WF004-1> PL014 > BG007-1. Experimental results showed that bacterial strains with higher degradation ability were easily obtained after long-term induction of glufosinate, especially under a screening pressure of high glufosinate. Biodegradation experiment of 3 selected strains in sterilized soils containing glufosinate showed a higher degradation ability 7 days after treatment. However, similar degradation was also found in non-sterilized and non-inoculated soils due to other indigenous microbes. Analysis of denaturing gradient gel electro- phoresis (DGGE) revealed that the propagation of P. citronellolis was apparently inhibited in soils 21 days after inoculation, while that of two other strains were not affected. Besides, the indigenous bacteria flora were more or less altered by selected bacteria.
URI: http://hdl.handle.net/11455/36823
其他識別: U0005-2706200614010600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706200614010600
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.