Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3684
標題: 應用氣舉式發酵槽於Streptomyces padanus PMS-702 生產Fungichromin之研究
Production of Fungichromin by Streptomyces padanus PMS-702 in Air-lift bioreactor
作者: 陳佑瑞
Chen, Yu-Jui
關鍵字: Streptomyces padanus
多烯類大環內酯
fungichromin
biological control
polyene macrolides
air-lift bioreactor
治黴色基素
生物防治
氣舉式發酵槽
出版社: 化學工程學系所
引用: 1. Shih, H.D., Liu, Y. C., Hsu, F. L., Fungichromin: A Substance from Streptomyces padanus PMS-702 with Inhibitory Effects on Rhizoctonia solani. Journal of agricultural and food chemistry, 2003. 51: p. 95-99. 2. 薛春生, 化學工程大辭典-默克索引. 1988: 中央圖書出版社. 3. 林偉誠, 應用Streptomyces padanus PMS-702 生產Fungichromin最適化條件之探討. 2004: 國立中興大學化學工程學系碩士論文. 4. 羅淇文, 應用液態培養Streptomyces padanus PMS-702生產Fungichromin醱酵槽培養條件探討. 2005: 國立中興大學化學工程學系碩士論文. 5. 吳信諺, 應用液態培養Streptomyces padanus PMS-702生產Fungichromin-油脂及界面劑添加效應之探討. 2006: 國立中興大學化學工程學系. 6. 蘇遠志, 應用微生物學. 1998: 華香園出版社. 7. 田蔚城, 抗微生物用藥-抗生素市場調查. 1994: 財團法人生物技術開發中心. 8. 田蔚城, 生物技術. 1998, 財團法人生物技術開發中心: 第21章 抗生素的醱酵生產與生物技術. 9. Aharonowitz, F., Bioactive microbial products Ⅱ: development and production. Microbiology 1983. 10. Martin, J.F., Demain,A.L, Cloning of a Gene Involved in Antibiotic Synthesis. Microbiological reviews, 1980: p. 230-251. 11. Wen, S.X., Research and production of antibiotics China. Chinese Journal of Phamaceuticals, 1997. 28(2): p. 51-55. 12. Pandey, R.C., Guenther, E. C., Physicochemical and biological comparison of polyene macrolide antibiot., fungichromin, lagosin and cogomycin. The Journal of antibiotics 1982. 35: p. 988-996. 13. Barabas, G.Y., Szabo, G., Effect of Penicillin on Streptomycin Production by Streptomyces griseus. Antimicrobial agents and Chemistry, 1977. 11(3): p. 392-395. 14. Liu, C.M., Schaffner, C. P., Factors Affecting the Production of Candicidin. Antimicrobial agents and Chemotherapy 1974. 7(2): p. 196-202. 15. Vu-Trong, K.B., S., Gray, P.P., Metabolic regulation in Tylosin-producing Streptomyces fradiae: phosphate control of Tylosin biosynthesis. Antimicrobial agent and Chemistry 1981. 19(2): p. 209-221. 16. Yagi, S., Kitai, S., Kimura, S., Stimulative effect of elemental Sulfur on Siomycin production by Streptomyces sioyaensis. Applied Microbiology, 1971. 21(2): p. 153-156. 17. Takashi and Johnson, M.J., Production, purification, and characterization of synnematin. Journal of Biochemistry, 1958. 77: p. 112-118. 18. Baker, K.F., Evolving concepts of biological control of plant pathogens. Annual Reviews 1987. 25: p. 67-85. 19. 楊柳燕, 馬文琦, 環境微生物工程. 2000: 南京大學出版社. 20. 石信德, 黃振文, 劉永銓, 徐鳳麟, 植物保護用鏈黴菌Streptomyces padanus PMS-702組成物製劑及其製法. 中華民國專利I 224142號, 2004. 21. 黃秀梨, 微生物學. 2003: 高等教育出版社. 22. Misato, T., Yamaguchi, I., Use of antibiotics in Agriculture. 1977. 23. Rodger, P.B., Potntial of biopesticides in agriculture. Potential of Biopesticides in Agriculture, 1993. 24. Hwang, B.K., Ahn, S. J. and Moon, S. S., Production, purification, andantifungalactivity of the antibiotic nucleoside, tubercidin, production by Streptomyces violaceoniger. Journal canadien de botanique, 1994. 72: p. 480-485. 25. Rothrock, C.S., and Gottlieb, D., Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Canadian Journal of Microbiology, 1984. 30(12): p. 1440-1447. 26. Lahdenpera, M.L., The control of Fusarium wilt on carnation with a Streptomyces preparation. Acta horticulturae, 1987. 2: p. 85-92. 27. EI-Abyad, M.S., EI-Sayed, M. A., EI-Shanshoury, A. R., and EI-Sabbagh, S. M. , Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Strepmyces spp. Plant and Soil 1993. 149: p. 185-195. 28. Emmert, E.A.B., and Handelsman, J., Biological control of plant disease : a (Gram-) positive perspective. FEMS immunology and medical microbiology 1999. 29. Jose, A.G., Paloma, L ,Juan, F. M, The polyenes: properties, biosynthesis, and fermentation. Biotechnology of Industrial Antibiotics, 1984. 21: p. 513-529. 30. Xiao, K., Kinkel, L. L., and Samac, D. A., Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control, 2002. 23: p. 285-295. 31. Lloyd, A.M., A. R. Barnason, Rogers, S. G., Transformation of arabidopsis thaliana with agrobacterium tumefaciens. Science, 1986. 234. 32. Omura, S.T., Production, structure and antifungal activity of polyene macrolides. 1984, New York: Macrolide antibiotics:chemistry, Biology and Practice. 33. Martin, J.F., McDaniel, L. E., Production of polyene macrolide antibiotics. Advances in applied microbiology, 1977. 21: p. 1-52. 34. Robison, R.S., Aszalos, A., Karaemer, N. and Giannini, S. M., Production of fungichromin by Streptoverticillium cinnamomeum subsp. cinnamomeum NRRLB-1285. The Japanese journal of antibiotics, 1971. 24(1971): p. p. 273. 35. Harrison, P.H., Noguchi, H. and Vederas, J. C., Biosynthesis of polyene antibiotics: intact incorporation of 13C-labeledoctanoate into fungichromin by Streptomyces cellulosae. Journal of the American Chemical Society, 1986. 108(1986): p. 3833-3834. 36. Keilin, D., The use of glucose oxidase for the determination of glucose in biology material and for the study of glucose-producing system by monomettric methods. Journal of Biochemistry, 1948. 42: p. 230-238. 37. Smith, J.J., Lilly, M. D., and Fox, R. I., The effect of agitation on the morphology and penicillin production of Penicillin chrysogenum. Department of Chemical and Biochemical Engineering, 1990. 35: p. 1011-1023. 38. Tamerler, Y.C., Adlard, M. W., and Keshavarz, T. , Production of swainsonine from Metarhizium anisopliae in stirred-tank and air-lift reactors. Biotechnology Letters, 1997. 19(1997): p. 919-922. 39. Tamerler, Y.C., Optimization of agitation production of swainsonine from Metarhizium anisopliae in stirred-tank and air-lift reactors. Biotechnology letters, 1999. 21: p. 501-504. 40. Ju, L.K., Ho, C. S., and Shanadan, J. F., Effects of carbon dioxide on the rheological behavior and oxygen transfer in submerged penicillin fermentations. Biotechnology and Bioengineering, 1991. 38: p. 1223-1232. 41. Priede, M.A., Vanags, J. J., Viesturs, U. E., Tucker, K. G., and Bujalski, W. , Hydrodynamic, physiological and morphological characteristics of Fusarium moniliforme in geometrically dissimilar stirred tank bioreactors. Biotechnology and Bioengineering, 1995. 48: p. 266-277. 42. Cui, Y.Q., van der Lans, R. G. and Luyben, K. C. , Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnology and Bioengineering, 1997(55): p. 715-726. 43. Viesturs, U.E., Sturmanis, I. A., Krikis, V. V., and Prokopenko, V. D., Investigation of fermentors with various contacting devices. . Biotechnology and Bioengineering, 1980(22): p. 799-820. 44. Choi, P.B., Designing airlift loop fermenters. . Chemical Engineering Progress, 1990(12): p. 32-37. 45. Merchuk, J.C., Why use air-lift bioreactors?. Today in Biotechnology, 1990(8): p. 66-71. 46. Russell, T.W.F., Dunn, I. J., and Blanch, H. W., The tubular loop batch fermentor: basic concepts. Biotechnology and Bioengineering, 1974. 16: p. 1261-1272. 47. Ziegler, H., Meister, D., Dunn, I. J., Blanch, H. W., and Russell, T.W. F., The tublar loop fermentor: Oxygen transfer, growth kinetics, and design. Biotechnology and Bioengineering, 1977(19): p. 507-525. 48. Wu, J.Y., Fed-batch culture of saccharomyces cerevisiae in an airlift reactor with net draft tube. Biotechnology Progress, 1991(7): p. 230-233. 49. Dussap, G.a.G., J. B., Energy consumption and interfacial mass transfer area in an air-lift fermentor. The Chemical Engineering Journal, 1982. 25: p. 157-162. 50. Nelson, D., Improved chlorophyll extraction method. Science, 1960. 5: p. 351-356. 51. Bessell, C.J., Fletcher, D. L., Mortimer, A. M., Anslow, W. A., Campbell, A. H. , Production of the antibiotic lagosin. British Patent, 1961. 2: p. 708-711. 52. Choi, D.B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S., Efficient Tylosin Production from Streptomyces fradiae Using Rapeseed Oil. Journal of Fermentation and Bioengineering, 1996. 82(1996): p. 183-186. 53. Melhuish, J.H., Hacskaylo, E., Fatty acid composition of ectomycorrhizal fungi in vitro. Mycologia, 1975. 67: p. 952-960. 54. Yang, F.C.a.L., C.B., The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochemistry, 1998. 33: p. 547-553. 55. 宮衡, 倫世儀, 溶氧控制和pH控制在賴氨酸分批發酵過程中的應用. 無錫輕工業學院學報, 1994. 13. 56. Noriyasu, O., Soo,P.Y., Kazutoyo, Y., Mitsuyasu, O., Comparison of neomycin production from streptomyces fradiae cultivation using soybean oil as the sole carbon source in an air-lift bioreactor and a stirred-tank reactor. Journal of fermentation and Bioengineering, 1995(79): p. 443-448. 57. Lee, K.M., S.Y. Lee, and H.Y. Lee, Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. Journal of Bioscience and Bioengineering 1999. 88: p. 646-650.
摘要: 本研究使用具有抗真菌活性的鏈黴菌Streptomyces padanus PMS-702來進行多烯類大環內酯抗生素Fungichromin(治黴色基素)之醱酵生產研究。此抗生素不但存在生物防治潛力(例:對立枯絲核菌及番茄晚疫病有良好抑制效果),還可應用於如腫瘤之臨床醫療上。 本研究主要是於液態培養中,透過葡萄糖、油脂消耗、菌重、Fungichromin產物的時間關係圖,了解油脂添加時機與不同油脂對Fungichromin產物及菌的變化。實驗結果顯示不飽和脂肪酸可提升Fungichromin之產量。利用顯微鏡觀察菌體及菌球內Fungichromin晶體之型態,添加油脂的菌Fungichromin晶體分佈在發酵中密度越高,Fungichromin產量越大。 在油脂添加方面,玉米油的添加有助於菌體乾重的提升,而橄欖油的添加對於Fungichromin產量有提升效果。在培養基中添加2 %界面劑Span80並於第二天再添加1%玉米油,結果顯示,醱酵至第4天時,Fungichromin產量可達約1700 mg/L,約為未添加時(Fungichromin產量16.7 mg/L)的8.5倍。將此操作於氣舉式醱酵槽中進行。在溫度23.8 ℃、通氣量2.5 vvm、不控制pH值的條件下,於培養第7天Fungichromin產量可達到2196 mg/L的產量,約為不添加時的9.34倍。 關鍵字:鏈黴菌、多烯類大環內酯、治黴色基素、生物防治、氣舉式發酵槽
Streptomyces padanus PMS-702 not only has the potential for preventing and curing the organism attack (for example, it can control the diseases of Rhizoctonia damping-off of cabbage and tomoto late blight), but also can be applied to clinical medical treatment of tumor. This research is focused on applying the air-lift bioreactor to cultivate Streptomyces padanus PMS-702 to produce an anti-fungus antibiotic, fungichromin. Several factors including glucose concentration, oil types and concentrations would affect microbial growth and fungichromin production in the submerged culture. Different oils combination and addition was also shown to be a critical factor influencing the production. Further study exhibited that the addition of 2% Span80 at day 0 along with 1% corn oil at day 2could give a high fungichromin production of 1700mg/L. Generally, the addition of corn oil was more in favor to microbial growth and olive oil supplementation was more beneficial to fungichromin production. A 5L air-lift bioreactor was applied to cultivate Streptomyces padanus PMS-702 under the following conditions: 23.8 ℃, 2.5 vvm, without pH control, 2% Span80 at day 0 along with 1% corn oil at day 2 under this condition, the production of fungichromin would 2190 mg/L, would reach a 9.34-fold increase compared to that with basal medium. Keywords : Streptomyces padanus, fungichromin, biological control, polyene macrolides, air-lift bioreactor
URI: http://hdl.handle.net/11455/3684
其他識別: U0005-1508200802243000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508200802243000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.