Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3686
標題: 探討碳氮源於螺旋藻生長及葉綠素、藻藍蛋白產量之影響
The effect of nitrogen and carbon sources on the production of chlorophyll and phycocyanin by Spirulina platensis.
作者: 翁婉琳
Weng, Wan-Lin
關鍵字: 發光二極體
Light-emitting diodes
螺旋藻
光自營培養
碳源
氮源
Spirulina platensis
Photoautotrophic cultivation
nitrogen and carbon sources
出版社: 化學工程學系所
引用: 1. Peng T.C., The effects of light intensity, temperatureand salinity on polysaccharide of Spirulina platensis. Department of Aquaculture, 2005. 2. Hu Q., Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Industrial production of microalgal cell-mass and secondary products-major industrial species. Arthrospira (Spirulina) platensis., ed. A. Richmond. 2003, USA: Blackwell Science. 264-272. 3. UTEX Culture collection of Algae, University of Texas at Austin. (UAS) , ATCC 29408, http: // http://www.utex.org / . 4. Ciferri O., Spirulina: the edible microorganism. Microbiological Reviews, 1983. 47: p. 551-578. 5. Ye J.L. and Wu W.T., Studies on Lipid Production from Microalgae Using Two-step Cultivation Strategy in a Photobioreactor. Department of Chemical Engineering, National Cheng Kung University, 2006. 6. Masojidek J., Koblizek M. and Torzillo G., Photosynthesis in microalgae. In:Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 2004, UK: Blackwell Science. 20-33. 7. Pulz O., Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol., 2001. 37(3): p. 287-293. 8. Glazer A.N., Chen C., Williams R.C., Yeh S.W. and Clark J.H., Kinetics of energy flow in the phycobilisome core. Science, 1985. 230: p. 1051-1053. 9. Rangel-Yagui C.de.O., Danesi E.D.G., de.Carvalho J.C.M. and Sato S., Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource Technology, 2004. 92: p. 133-141. 10. Tomonou Y. and Amao Y., Effect of micellar species on photoinduced hydrogen production with chlorophyll-a from spirulina and colloidal platinum. International Journal of Hydrogen Energy, 2004. 29: p. 159-162. 11. Niyogi K., Bjorkman O. and Grossman A., Chlamydomonas xanthophylls cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell Physiology, 1997. 9: p. 1369-1380. 12. Su C.H., Systematic design for cultivation of oleaginous microalgae. 2006. 13. Wikdors G.H. and Ohno M., Impact of algal research in aquaculture. Journal of phycology, 2001. 37: p. 968-974. 14. Ravindra A.P., Value-added food: Single cell protein. Biotechnology Advances, 2000. 18: p. 459-479. 15. Deshnium P., Paithoonrangsarid K., Cheevadhanarak S., Meesapyodsuk D., Tanticharoen M. and Cheevadhanarak S., Temperature independent and-dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1(Arthrospira sp. PCC 9438). Microbiology Letters, 2000. 184: p. 207-213. 16. Gregersen L. and Jorgensen S., Supervision of fed-batch Fermentations. Chemical Engineering Journal, 1999. 75: p. 69-76. 17. Belay A., Ota Y., Miyakawa K. and Shimamatsu H., Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 1993. 5: p. 235-241. 18. Ayehunie S., Belay A., Baba T.W. and Ruprecht R.M., Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 1998. 18: p. 7-12. 19. Hayakawa Y., Hayashi T., Hayashi K., Hayash T., Ozawa T., Niiya K. and Sakuragawa N., Heparin cofactor II-dependent antithrombin 45 activity of calcium spirulan. Blood Coagulation Fibrinolysis, 1996. 7: p. 554-560. 20. Mishima T., Murata J., Toyoshima M., Fujii H., Nakajima M., Hayashi T., Kato T. and Saiki I., Inhibition of tumor invasion and metastasisby calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clinical and Experimental Metastasis, 1998. 16: p. 541-550. 21. Binaghi L., Borghi A.D., Lodi A., Converti A. and Borghi M.D., Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry, 2003. 38: p. 1341-1346. 22. Chojnacka K. and Noworyta A., Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004. 34: p. 461-465. 23. Apt K.E. and Behrens P.W., Commercial developments in microalgal biotechnology. J.Phycol., 1999. 35(2): p. 215-226. 24. Kaplan A., Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3- uptake capability to CO2- depleted conditions. Journal of Experimental Botany, 1981. 32: p. 669-677. 25. Vonshak A. and Richmond A., Mass production of the blue-green alga Spirulina: An overview. Biomass and Bioenergy, 1988. 15: p. 233-247. 26. Vonshak A., Chanawongse L., Bunnag B. and Tanticharoen M., Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. Journal of Applied Phycology, 1996. 8: p. 35-40. 27. Jensen S. and Knutsen G., Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. Journal of Applied Phycology, 1993. 5: p. 495-504. 28. 谭辉玲 and 薛建刚, 特定红外辐射对钝鼎螺旋藻生长的影响. 微生物学通报, 1993. 20(4): p. 23-26. 29. 鞠宝 and 王长海, 光强、循环速度和温度对螺旋藻生长的影响. 海洋通通, 1999. 18(3): p. 35-40. 30. 陳燕珍, 光合作用. 四版 ed. 1994 台北: 銀河文化事業有限公司,新世紀編輯小組. 31. 李叙风 and 王长海, 螺旋藻培养条件的研究. 食品与拨酵工业, 1999. 25(4): p. 13-17. 32. Belkin S. and Boussiba S., Resistance of Spirulina platensis toammonia at high pH values. Plant Cell Physiology, 1991. 32: p. 953-958. 33. Vonshak A. and Tomaselli L., Arthrospira (Spirulina) : systematics and ecophysiology. Ecology of Cyanobacteria. Kluwer Academic Publishing, ed. B.A. WhittonM. Potts. 2000. 505-522. 34. Jiménez C., Cossío B.R. and Niell F.X., Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture, 2003. 221: p. 331-345. 35. Danesi E.D.G., Rangel-Yagui C.de.O., de Carvalho J.C.M. and Sato S., Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 2004. 26: p. 329-335. 36. Ayachi S., Abed A.E., Dhifi W. and Marzouk B., Nitrogen effects on proteins, chlorophylls and fatty acids during the growth of arthrospira platensis. Italian Journal of Biochemistry, 2007. 56(2): p. 166-170. 37. Converti A., Scapazzoni S., Lodi A. and Carvalho J.C.M., Ammonium and urea removal by Spirulina platensis. J Ind Microbiol Biotechnol, 2006. 33: p. 8-16. 38. Colla L.M., Reinehr C. O., Reichert C. and Costa J.A.V., Production of biomass and nutraceutical compounds by Spirulina platensis under diVerent temperature and nitrogen regimes. Bioresource Technology, 2007. 98: p. 1489–1493. 39. Wang C.Y., Fu C.C. and Liu Y.C., Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 2007. 40. Javanmardian M. and Palsson B.Ø., High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnology and Bioengineering, 1991. 38: p. 1182-1189. 41. Johansson D.M., Wang X., Johansson T., Inganäs O., Yu G., Srdanov G. and Andersson M.R., Srnthesis of soluble Phenyl-substituted poly (p-phenylenevinylenes) with a low content structural defects. Journal of Macromolecules, 2002. 35: p. 4999-5003. 42. Yang X., Hua Y., Yin S., Wang Z., Hou Y., Xu Z., Xu X., Peng J. and Li W., Anovel oligomer poly (phenylene vinylene) derivative con taining oxadiazole segment. Synthetic Metals, 2000. 112: p. 455-457. 43. Yang S., Wang Z., Chen X., Yang X., Hou Y., Xu Z., Wang L. and Xu X., Color-variable electroluminescence from poly (p=phenylene vinylene) derivatives. Journal of Displays, 2000. 21: p. 65-68. 44. Lee C.G. and Passon B.Ø., High-density algal photobioreactors using light-emitting diodes. Biotechnology and bioengineering, 1994. 10: p. 1161-1167. 45. Matthijs H.C.P., Balke H., Kroon B.M.A., Mur L.R. and Binot R.A., Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 1996. 50: p. 98-107. 46. Wang C.Y., Effects of using light emitting diodes on the cultivation of Spirulina platensis. Master thesis, 2007. 47. Zarrouk C., Contribution a letude d''une cyanophycee. Influence de divers facteurs physiques. et chimiques sur la croissance et la photosynthese do Spirulina maxima. University of Paris, France. Ph.D Thesis, 1966. 48. Borowitzka M., Algae culture, in Aquaculture: farming aquatic animals and plants, ed. J.S. LucasP.C. Southgate. 2003, UK: Blackwell Publishing Ltd. p. 253-276. 49. Costa J.A.V., Colla L.M. and Filho P.F.D., Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 2004. 92: p. 237-241. 50. Chojnacka K., Chojnacki A. and Górecka H., Treace element removal by Spirulina sp. from copper smelter and refinery effuents. Hydrometallurgy, 2004. 73: p. 147-153. 51. Nelson D., Improved chlorophyll extraction method. Science, 1960. 5: p. 351-356. 52. Richmind A., Handbook of microalgal culture biotechnology and applied phycology. Basic culturing techniques, 2004. 53. Bennett A. and Bogorad L., Complementary chromatic adaptation in filamentous blue-green alga. The Journal of cell biology, , 1973. 58: p. 419-435. 54. Abalde J., Betancourt L., Torres E., Cid A. and Barwell C., Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 1998. 136: p. 109-120. 55. Sarada R., Pillai M.G. and Ravishankar G.A., Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yild, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 1999. 34: p. 795-801. 56. Sloth J.K., Wiebe M.G. and Erikse N.T., Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 2006. 38: p. 168-175. 57. American Public Health Association, American Water Works Association & Water Pollution Control Federation.Standard Methods for the Examination of Water and Wastewater 20th ed., Method 2320B. 1998. 2: p. 26-29. 58. 行政院環境保護署,水中鹼度檢測方法-滴定法,(92)環署檢字第0920085112號公告,NIEA W449.00B. 59. 行政院環境保護署,水中氫離子濃度指數測定法-電極法,(83)環署檢字第00540號公告,NIEA W424.50A. 60. 日本環境省自然環境局,礦泉分析法指針(更改). 2003: p. 68-69. 61. Muro-Pastor M.I. and Florencio F.J., Regulation of ammonium assimilation in cyanobacteria. Plant Physiology and Biochemistry, 2003. 41: p. 595-603. 62. Chen C.H., The growth and cellular characteristics of spirulina platensis. Master thesis, 1983. 63. Yeh C.T., The isolation of attached diatoms wetland of Szu-Taso and the tolerance on heavy matels of diatoms. Master thesis, 2006. 64. Faucher O., Coupal B. and Leudy A., Utilization seawater-urea as culture medium for spirulina maxima. Can. J. Microbiol., 1997. 25: p. 752-759. 65. Verstreate D.R., Storch T.A. and Dunham V.L., A comparison of the influence of iron on growth and nitrate metabolism of anabaena and scenedesmus. Physiol. Plant., 1980. 50: p. 47-51. 66. Zeng W.L., Cong W., Cai Z.L. and Ouyang F., Reviews on the trophic modes and factors affecting photosynthesis of spirulina. Chinese Bulletin of Botany, 2002. 19(1): p. 70-77.
摘要: 本研究以紅光之發光二極體(Light-emitting diodes)作為螺旋藻(Spirulina platensis)光自營培養(Photoautotrophic)之光源,光強度為3000μmol photons m-2 s-1,探討碳氮源於螺旋藻生長、葉綠素和藻藍蛋白產量的關係。研究結果顯示:(1)當氮源耗盡,於氮源限制下,藻藍蛋白將被降解,反作為氮源來提供其他蛋白質之合成或維持細胞生長,說明藻藍蛋白扮演儲存蛋白質的角色;(2)氮源添加有助於藻藍蛋白量累積,提早添加較晚添加效果好,於氮源用盡後再添加氮源,其效果會延遲,提早添加使藻藍蛋白能持續增長;(3)當培養基中之尿素濃度大於0.25 g/L 將對螺旋藻生長產生抑制作用;(4)當碳酸氫鈉濃度為8 g/L、尿素濃度為0.175 g/L,依此條件相較於基本培養基,其單位菌量之藻藍蛋白產量可增加28%。 由結果顯示於培養期間,硝酸鈉不會被螺旋藻所消耗吸收,對於螺旋藻生長及葉綠素、藻藍蛋白產量沒有差異,故培養基之氮源可考慮僅用尿素;使用尿素為培養基之唯一碳氮源時,其螺旋藻之生物質量達0.33 g/L。 當尿素比消耗速率小於0.05 (g/g/day)時,葉綠素及藻藍蛋白比生產率皆為負值,且藻藍蛋白比降解速率大於葉綠素;而在相同之比尿素消耗速率下,藻藍蛋白比生產率為葉綠素的7倍。
The effects of nitrogen and carbon sources on the production of chlorophyll and phycocyanin by spirulina platensis were investigated under red light-emitting diode (LED) with 3000μmol photons m-2 s-1 as the light source. From the experimental results, nitrogen deficiency resulted in phycocyanin and chlorophyll degradation, which provide amino acid for protein biosynthesis or other important cellular constituents for cell growth. Urea addition at different time interval for Spirulina platensis growth was examined. The result showed urea was advantageous for phycocyanin accumulation in algea. The data also displayed that urea concentration higher than 0.25 g/L would hinder Spirulina platensis growth. At urea concentration of 0.175 g/L, and NaHCO3 concentration of 8 g/L, the phycocyanin content per biomass increased 28% as compared to that in basic culture medium. On the other hand, the sodium nitrate in basic culture medium was not consumed during culture period, which means it exerts no effect on the cell growth. When using 0.1 g/L of urea as the sole carbon and nitrogen source in the cultivation, the algae biomass reached 0.33 g/L. When specific urea consumption rate was less than 0.05 g/g/day, both of specific chlorophyll and phycocyanin production rate values are negative, and the phycocyanin specific degradation rate is higher than that of chlorophyll. Besides, at the same specific urea consumption rate, the specific phycocyanin production rate is 7 times higher than that of chlorophyll.
URI: http://hdl.handle.net/11455/3686
其他識別: U0005-1508200817302900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508200817302900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.