Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36860
標題: 水稻白葉枯病抗性基因之序列結構剖析與預測平台建立
Sequence Structure Analysis and Prediction Platform Establishment in Rice Bacterial Blight Resistance Genes
作者: 呂椿棠
Lu, Chun-Tang
關鍵字: Xa gene
水稻白葉枯病抗性基因
phylogenetic
leucine-rich repeat
gene prediction
resistance-gene analogues
親緣關係
多白胺酸重複
基因預測
抗性基因類似物
出版社: 農藝學系所
引用: Adhikari TB, A Shrestha, RC Basnyat, TW Mew (1999) Use of partial host resistance in the management of bacterial blight of rice. Plant Disease 83:896-901. Altschul SF, TL Madden, AA Schäffer, J Zhang, Z Zhang, W Miller, DJ Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402. Arumuganathan K, ED Earle (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Rep. 9:208-218. Ashfield Y, LE Ong, K Nobuta, CM Schneider, RW Innes (2004) Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:309-318. Bai J, LA Pennill, J Ning, SW Lee, J Ramalingam, CR Webb, B Zhao, Q Sun, JC Nelson, JE Leach, SH Hulbert (2003) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12:1871-1884. Baker B, P Zambryski, B Staskawicz, SP Dinesh-Kumar (1997) Signaling in plant-microbe interactions. Science 276:726-733. Birney E, R Durbin (1997) Dynamite: a flexible code generating language for dynamic programming methods used in sequence comparison. ISMB 5:56-64. Borodovsky M, J McIninch (1993) GeneMark: parallel gene recognition for both DNA strands. Comput. Chem. 17:123-133. Brejová B, DG Brown, M Li, T Vinař (2005) ExonHunter: a comprehensive approach to gene finding. Bioinformatics 21:i57-i65. Burest M, R Guigó (1996) Evaluation of gene structure prediction programs. Genomics 34:353-367. Burge CB, S Karlin (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268:78-94. Burge CB, S Karlin (1998) Finding the genes in genomic DNA. Curr. Opin. Stru. Biol. 8:346-354. Chelkowski J, G Koczyk (2003) Resistance gene analogues of Arabidopsis thaliana: recognition by structure. J. Appl. Genet. 44:311-321. Dangl JL, JD Jones (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833. Delcher AL, D Harmon, S Kasif, O White, SL Salzberg (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27:4636-4641. Dong Y, JG Zhang, YJ Wang, JS Zhang, SY Chen (2004) Phylogenetic analysis of receptor-like kinases from rice. Acta. Botanica Sinica 46:647-654. Durbin R, SR Eddy, A Krogh, G Mitchison (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, New York, pp35. Edwards AWF, LL Cavalli-Sforza (1964) Reconstruction of evolutionary trees. In: Heywood VH, McNeill J (eds) Phenetic and phylogentic classification. Systematics Association, London, pp 67-76. Efron B (1979) Bootstrap methods : another look at the jackknife. Ann. Statist. 7:1-26. Ellis GL, EJ Finnegan (1995) Contrasting complexity of two rust resistance loci in flax. Proc. Natl. Acad. Sci. USA 92:4185-4188 Ellis JG, GJ Lawrence, JE Luck, PN Dodds (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495-506. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368-376. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. Felsenstein J (1988) Phlyogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 22:521-565. Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266:418-427. Feng Q, Y Zhang, P Hao, S Wang, G Fu, Y Huang, et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420:316-320. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst. Zool. 19:99-113. Flor HH (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296. Goff SA, D Ricke, TH Lan, G Presting, R Wang, M Dunn, J Glazebrook, A Sessions, P Oeller, H Varma, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100. Gu K, B Yang, D Tian, L Wu, D Wang, C Sreekala, F Yang, Z Chu, GL Wang, FF White, Z Yin (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122-1125. Gu L, R Guo (2007) Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice. J. Genet. Genom. 34:247-257. Harrison CJ, JA Langdale (2006) A step by step guide to phylogeny reconstruction. Plant J. 45:561-572. Henderson J, S Salzberg, K Fasman (1997) Finding genes in DNA with a hidden Markov model. J. Comput. Biol. 4:127-141. Hendy MD, D Penny (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math. Biosci. 59:277-290. Higgins DG, JD Thompson, TJ Gibson (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266:383-402. Hills DM, JJ Bull (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42:182-192. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860-921. Jin GL, XS Wang, UJ Zh (2005) Bioinformatic analysis of the 14-3-3 gene family in rice. (in Chinese) Acta. Genetica Sinica 32(7):726-732. Johal GS, SP Briggs (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985-987. Jones DA, JD Jones (1997) The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res. 24:89-167. Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277:519-527. Kanazin V, LF Marek, RC Shoemaker (1996) Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 93:11746-11750. Karlin S, SF Altschul (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87:2264-2268. Kobe B, J Deisenhofer (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19:415-421. Kobe B, J Deisenhofer (1995) Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 5:409-416. Koski LB, GB Golding (2001) The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52:540-542. Krogh A, M Brown, S Mian, K Sjölander, D Haussler (1994) Hidden Markov models in computational biology applications to protein modeling. J. Mol. Biol. 235:1501-1531. Krogh A (1997) Two methods for improving performance of an HMM and their application for gene finding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5:179-186. Lomsadze A, V Ter-Hovhannisyan, Y Chernoff, M Borodovsky (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33:6494-6506. Lukashin AV, M Borodovsky (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26:1107-1115. Martin GB, Bogdanova AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54:23-61. Mathé C, MF Sagot, T Schiex, P Rouzé (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30:4103-4117. Monosi, B, RJ Wisser, L Pennill, SH Hulbert (2004) Full-genome analysis of resistance gene homologues in rice. Theor. Appl. Genet. 109:1434-1477. Ouyang S, W Zhu, J Hamilton, H Lin, M Campbell, K Childs, F Thibaud-Nissen, RL Malek, Y Lee, L Zheng, J Orvis, B Haas, J Wortman, CR Buell (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35:D883-887. Pavy N, S Rombauts, P Déhais, C Mathé, DVV Ramana, P Leroy, P Rouzé (1999) Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences. Bioinformatics 15:887-899. Pearson WR, G Robins, T Zhang (1999) Generalized neighbor-joining: more reliable phylogenetic tree reconstruction. Mol. Biol. Evol. 16:806-816. Pedersen JS, J Hein (2003) Gene finding with a hidden Markov model of genome structure and evolution. Bioinformatics 19:219-227. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77:257-285. Rogic S, AK Mackworth, FBF Ouellette (2001) Evaluation of gene-finding programs on mammalian sequences. Genome Res. 11:817-832. Rogic S, FBF Ouellette, AK Mackworth (2002) Improving gene recognition accuracy by combining predictions from two gene-finding programs. Bioinformatics 18:1034-1045. Saitou N, M Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4:406-425. Sakata K, H Nagasaki, A Idonuma, K Waki, M Kise, T Sasaki (1999) A computer program for prediction of gene domain on rice genome sequence p.78. In: 2nd Georgia Tech. Int. Conf. Bioinfor.: Sequence, Structure and Function. Nov. 11-14, 1999. Atlanta, Georgia, USA. (http://rgp.dna.affrc.go.jp/RiceHMM/) Salzberg S, AL Delcher, S Kasif, O White (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26:544-548. Sasaki T, T Matsumoto, K Yamamoto, K Sakata, T Baba, Y Katayose, et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312-316. Scbwartz RL, T Phoenix, BD Foy (2006) Learning Perl. 4th ed. O'Reilly, USA. 316pp. Shen KA, BC Meyers, MN Islam-Faridi, et al. (1998) Resistance gene candidates identified by PCR with degenerate primers map to clusters of resistance genes in lettuce. Mol. Plant Microbe Interact. 11:815-823. Singh S, JS Sidhu, N Huang, Y Vikal, Z Li, DS Brar, HS Dhaliwal, GS Khush (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theo.r Appl. Genet. 102:1011-1015. Song WY, LY Pi, GL Wang, J Gardner, T Holsten, PC Ronald (1997) Evolution of the rice Xa21 disease resistance genefamily. Plant Cell 9:1279-1287. Song, WY, GL Wang, LL Chen, HS Kim, LY Pi, T Holsten, J Gardner, B Wang, WX Zhai, LH Zhu, C Fauquet, P Ronald (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 207:1804-1806. Staden R, AD McLachlan (1982) Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Res. 10:141-156. Stanke M, S Waack (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19:ii215-ii225. Staskawicz BJ, FM Ausubel, BJ Baker, JG Ellis, JDG Jones (1995) Molecular genetics of plant disease resistance. Science 268:661-667. Sun X, Y Cao, Z Yang, C Xu, X Li, S Wang, Q Zhang (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37:517-527. Sun X, C Yinglong, S Wang (2006) Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol. 140:998-1008. The Rice Chromosomes 10 Sequencing Consortia (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566-1569. The Rice Chromosome 3 Sequencing Consortium (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res. 15:1284-1291. The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene dupliations. BMC Biology 3:20-37. Thompson JD, DG Higgins, TJ Gibson (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. Thompson JD, TJ Gibson, F Plewniak, F Jeanmougin, DG Higgins (1997) The clustal_X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. Thompson JD, F Plewniak, O Poch (1999) A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res. 27:2682-2690. Van de Linden CG, DCAE Wouters, V Mihalka, EZ Kochieva, MJM Smulders, B Vosman (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109:384-393. Vision TJ, A McLysaght (2003) Computational tools and resources in plant genome informatics. Handbook of Plant Biotechnology. Paul Christou and Harry Klee (ed). John Wiley & Sons Ltd. Chr 4. p17-19. Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol. 26:1599-1609. Wang AJ, CX Zhu, FJ Wen (2002) Molecular biology of the resistance to blight disease in rice (in Chinese with English abstract). J. Shandong Agric. Univ. (Nat. Sci.) 33:101-106. Wang GL, DL Ruan, WY Song, S Sideris, LL Chen, LY Pi, S Zhang, C Fauquet, BS Gaut, MC Whalen, PC Ronald (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765-780. Wang GL, C Wu, L Zeng, C He, M Baraoidan, F. de A. G. da Silva, CE, Williams, PC Ronald, H Leung (2004) Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. Oryzae. Theor. Appl. Genet. 108:379-384. Wang TZ (2006) Structure and phylogenetic analysis of three classes of rice disease resistance homologues. Master thesis. Zhejiang University, China. 61-70pp Wang Z, Y Chen, Y Li (2004) A brief review of computational gene prediction methods. Genom. Prot. Bioinfo. 2:216-221. Yeh RF, LP Lim, CB Burge (2001) Computational inference of homologous gene structures in the human genome. Genome Res. 11:803-816. Yoshimura S, Y Umehara, N Kurata, Y Nagamura, T Sasaki, Y Minobe, N Iwata (1996) Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight-resistance gene in rice. Theor. Appl. Genet. 93:117-122. Yoshimura S, UYamanouchi, Y Katayose, S Toki, ZX Wang, I Kono, N Kurata, M Yano, N Iwata, T Sasaki (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA 95:1663-1668. Yu YG, GR Buss, MA Saghai-Maroof (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93:11751-11756. Zhai WX, WM Wang, YL Zhou (2001) Breeding bacterial blight-resistance hybrid rice with the cloned bacterial blight resistance gene Xa21. Mol. Breed. 8:285-293. Zhang X (1998) Leucine-rich repeat receptor-like kinases in plants. Plant Mol. Biol. Rep. 16:301-311. Zhou T, Y Wang, JQ Chen, H Araki, Z Jing, L Jiang, J Shen, D Tian (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271:402-415. Zuckerkandl E, L Pauling (1965) Molecules as documents of evolutionary history. J. Theor. Biol. 8:357-366.
摘要: 黃單孢桿菌(Xanthomonas oryzae pv. oryzae, Xoo)所引起的白葉枯病,是世界水稻生產中最嚴重的細菌性病害。目前已知32個水稻白葉枯病抗性基因(Xa),而利用基因圖譜選殖方法已完成定序的基因僅有Xa1、Xa21、Xa26、Xa27等4個。為利於Xa基因的序列結構剖析與預測,本研究利用生物資訊手段研發一套適用於發掘新的Xa基因之分析策略。首先探究這4個基因在不同分子序列型態的親緣關係,而以相鄰結合法(neighbor joining method, NJ)與最大概度法(maximum likelihood method, ML)兩種親緣分析方法所獲結果一致,且其所獲親緣結構較能解釋現有Xa基因之間的關係,即可區分為Xa1、Xa21、Xa26及Xa27等4個親緣群別,且Xa21基因家族可再細分為兩個子群。接著根據Xa基因所具有的多白胺酸重複(leucine-rich repeat, LRR)保守結構特性,在合併所有Xa基因之LRR motif的序列後,利用Clustal W軟體提供之多序列排比方法,建構出一個具有Xa基因專一性且符合植物類LRR motif的Xa模板。進而評估並找出適用於Xa基因且具有高準確度的基因預測軟體,結果以GeneMark.hmm軟體在核苷酸與外顯子兩個層次上的預測準確度最高,同時也利用Bioperl程式模組建置一個基因視覺化分析平台,可用來快速檢視及比較不同軟體之預測效果。最後以Xa模板為查詢序列,到含有水稻基因組序列的NCBI蛋白質資料庫、NCBI水稻資料庫以及下載自TIGR之水稻虛擬分子序列所建立之本地資料庫,以BLAST方法進行相似序列搜尋,結果共搜尋到13條與Xa基因或抗病性有關之抗性基因類似物的蛋白質序列。經兩兩排比結果,這些序列與已知Xa基因之序列的一致性很低,顯示這13條序列極有可能是Xa候選基因或是其相關之蛋白質產物的序列。因此,本研究所建立的分析策略及平台,能有效且快速在不同序列資料庫中偵測到與查詢模板有關的序列,促進水稻抗病基因之發現。
Bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), is the most destructive disease of rice worldwide. Currently, there have been 32 genes of rice conferring host resistance against Xoo, but only 4 among them, i.e., Xa1, Xa21, Xa26 and Xa27 have been sequenced via map-based gene cloning. To facilitate the sequence structure analysis and gene prediction for resistance to Xoo in rice, an analytical strategy of finding Xa genes based on bioinformatics was designed and implemented in this study. Firstly, the molecular phylogeny of the sequence patterns of the current 4 Xa genes was analyzed. Phylogenetic analysis using neighbor joining and maximum likelihood methods consistently supported a distinct phylogenetic relationship among the 4 Xa genes, that is, a set of 4 conserved clades was identified. The family of Xa21 genes was further also divided into 2 sub-groups. The second step was to construct a Xa templet based on structurally conserved leucine-rich repeat (LRR) motifs in Xa genes, using multiple sequence alignment of Clustal W for all the LRR sequence fragments of Xa genes. This templet was specific to Xa genes and had the characteristics of plant-LRR motif. The third step was to evaluate and select a gene prediction program that can be applied to find the most probable candidate Xa genes. GeneMark.hmm gave the most accurate in nucleotide and exon prediction of Xa genes. Using Bioperl modules, a gene modeling visualization platform was also designed to enable a clear comparative display of the sequence structure predicted from various prediction programs. Finally search of Xa gene analogues was performed by using our Xa templet as a query to blast the NCBI protein database, NCBI rice database and our local database of rice pseudomolecules from TIGR. A total of 13 protein sequences related to Xa, or resistance-gene analogues was obtained. Pairwise sequence identities between the analogue sequences and the known Xa-gene sequences were low in the alignment. It implies that these analogue sequences might be the most probable candidate Xa genes or the protein product of candidate genes. The results showed that our analytical strategy and platform could practically and rapidly detect the query-templet related sequences from the databases, thus accelerates the gene finding of rice resistant to disease.
URI: http://hdl.handle.net/11455/36860
其他識別: U0005-2601200817430600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2601200817430600
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.