Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36866
標題: 嘉磷塞防除銀合歡之殘量監測
Detection of glyphosate residue in glyphosate-treated Leucaena leucocephala
作者: 陳榮芳
Chen, Rong-Fang
關鍵字: Leucaena leucocephala
銀合歡
glyphosate
dissipation
HPLC
source
sink
嘉磷塞
HPLC
消褪
積儲
供源
出版社: 農藝學系所
引用: 李昭宗。2003。恆春地區銀合歡入侵及擴散之研究。國立屏東科技大學森林系碩士論文。屏東。 呂福原,陳民安。2002。墾丁國家公園外來種植物對原生殖群之影響以銀合歡為例。墾丁國家公園管理處保育研究報告 112: 1-47。 郭耀綸。2001。外來入侵種長穗木之個體生態學性狀及相剋作用潛力。台灣林業科學 16:14~103。 黃增泉、謝長富、黃星凡、楊國楨、湯惟新、楊繡玉。1988。墾丁國家公園豆科植物資源之調查研究。p.1~p.147。墾管處。屏東。 鍾玉龍、呂明倫。2006。SPOT衛星影像於墾丁國家公園銀合歡入侵分布之繪製。台灣林業科學 21:167-177。 蔣永正、蔣慕琰。2006。農田雜草與除草劑要覽。pp.45-46。行政院農業委員會農業藥物毒物試驗所編印。台中。 Ando, C. L., L. J. Walter, C. G. Segqwa, R. Sava, T. Barry, P. Lee, S. Tran., J. White, J. Hsu, and K. Goh. 2002. Residues of forestry herbicide in plants of interest to native American in California national forests. Bull. Environ. Contam. Toxicol. 59:556-563. Bradshaw, L., S. R. Padgette, S. L. Kimball, and B. H. Wells. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189-198. Bromilow, R. H. and K. Chamberlain. 2000. The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Manag. Sci. 56:368-373. Bromilow, R. H., K. Chamberlain, A. J. Tench, and R. H. Williams. 1993. Phloem Translocation of strong acid – glyphosate, substituted phosphonic and sulfonic acids – in Ricinus communis L. Pest. Sci. 37:39-47. Cheah, U. B., R. C. Kirkwood, and K. Y. Lum. 1998. Degradation of fourcommomly used pesticides in Malaysian agricultural soils. J. Agric. Food Chem. 46:1217-1223. Chen, H. J., T. C. Juang, and G. C. Li. 1994. Competitive adsorption between glyphosate and phosphate on the soil clays. Weed Sci. Bull. 15:101-114. Chou, C. H. and Y. L. Kuo. 1986. Allelopathic research of subtropical vegetation in Taiwan Ⅲ. Allelopathic exclusion of understory by Leucaena leucocephala (Lam.) de Wit. J. Chem. Ecol. 12:1431-1448. D''anieri, R. D., S. M. Zedaker, J. R. Seiler, and R. E. Kreh. 1990. Glyphosate translocation and efficacy relationships in red maple, sweetgum, and loblolly pine seedlings. For. Sci. 36:438-447. Devine, M., S. O. Duck, and C. Fedtke, eds. 1993. Inhibition of amino acid biosynthesis. In: Physiology of Herbicide Action. Chap 13. Prentice Hall: Englewood Cliffs, NJ. Duke, S. O., A. M. Rimando, P. F. Pace, K. N. Reddy, and R. J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51:340-344. Dick, R. E. and J. P. Quinn. 1995. Glyphosate-degrading isolates from environmental sample: occurrence and pathways of degradation. Appl. Microbiol. Biotechnol. 43:545-550. Eberbach, P. L. and K. H. Bowmer. 1995. Conversion of C14-glyphosate to carbon dioxide by Alligator Weed. J. Aquat. Plant Manage. 33:27-29. Eberbach, P. L. 1999. Influence of incubation temperature on the behavior of triethylamine-extractable glyphosate (N-Phosphonomethylglycine) in four soils. J. Agric. Food Chem. 47:2459-2467. Eerd, L. L. V., R. E. Hoagland, R. M. Zablotowica, and J. C. Hall. 2003. Pesticide mwtabolism in plant and microorganisms. Weed Sci. 51:472-495. Feng, J. C. and D. G. Thompson. 1990. Fate of glyphosate in a Canadian forest watershed. 2. Persistence in foliage and soils. J. Agric. Food Chem. 38:1118-1125. Ferreira, J. F. S. and K. N. Reddy. 2000. Absorption and translocation of glyphosate in Erythroxylum coca and E. novogranatense. Weed Sci. 48: 193-199. Forlani, G., A. Mangiagalli, E. Nielsen, and C. M. Suardi. 1999. Degradation of phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable. Soil Bio. Biochem. 31:991-997. Fox, P. M. and D. Borthakur. 2001. Selection of several classes of mimosine-degradation-defective Tn3Hogus-insertion mutants of Rhizobium sp. Strain TAL1145 on the basis of mimosine-inducible GUS activity. Can. J. Microbiol. 47:488-494. Gottrup, O., P. A. O’sullivan, R. J. Schraa, and W. H. Vanden. 1976. Uptake, translocation, metabolism and selectivity of glyphopsate in Canada thistle and leafy spurge. Weed Res. 16:197-201. Harrington, T. B. and J. H. Miller. 2005. Effects of application rate, timing, and formulation of glyphosate and triclopyr in control of Chinese Privet (Ligustrum sinense). Weed Technol. 19:47-54. Hawbaker, T. J. and V.C. Radeloff. 2004. Roads and landscape pattern in northern Wisconsin based on a comparison of four road data sources. Conserv. Biol. 18: 1233-1244. Hetherington, P., G. Marshall, and R. Kirkwood. 1999. The absorption, translocation and distribution of the herbicide glyphosate in maize expressing the CP-4 transgene. J. Expt. Bot. 50:1567-1576. Jachetta, J. J., A. P. Appleby, and L. Boersma. 1986. Apoplastic and symplastic pathways of atrazine and glyphosate transport in shoots of seedling sunflower. Plant Physiol. 82:1000-1007. Jacob, G. S., J. Schaefer, E. O. Stejskal, and R. A. Mckay. 1985. Solid-state NMR determination of glyphosate metabolism in a pseudomonas sp. J. Bio. Chem. 260: 5899-5905. Johansson, T. 1985. Herbicide injections into stumps of aspen and birch to prevent regrowth. Weed Res. 25:39-45. Johansson, T. 1988. Preventing strmp regrowth with a herbicide-applying tree cutter. Weed Res. 28:353-358. Kishore, G. M. and G. S. Jacob. 1987. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J. Biol. Chem. 262:12164-12168. Komoba, D., I. Gennity, and H. Sandermann. 1992. Plant metabolism of herbicides with C-P bonds: glyphosate. Pestic. Biochem. Physiol. 43:85-94. Lasala, A. V. and J. K. Dingle. 2000. The effect of seasonal and climatic factors on Eucalyptus oblique mortality in response to stem injection of glyphosate. Tasforest 12: 11-19. Lee, J. T. 2003. Study on the spread and invasion of Leucaena leucocephala in Hengchun area [dissertation]. Pingtung, Taiwan: Department of Forestry, National Pingtung Univ. Sci. Technol. 84 p. Liu, C. M., P. A. McLean, C. C. Sookdeo, and F. C. Cannon. 1991. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl. Environ. Microbiol. 57:1799-1804. Mara, M., T. Bonanho, S. Bazarin, S. Papini, M. Barifouse, and V. Lucia. 2003. Influence of repeated applications of glyphosate on its persistence and soil bioactivity. Pesq. Agropec Bras. 38:1329-1335. Mathews, A. and P. V. Rai. 1985. Mimosine content of Leucaena leucocephala and the sensitivity of rhizobium to mimosine. J. Plant Physiol. 117:377-382. Moshier, F. J. and D. Penner. 1978. Factors influencing microbial degradation of 14C-glyphosate to 14CO2 in soil. Weed Sci. 26:686-691. Nandula, V. K., C. L. Foy, and D. M. Orcutt. 1999. Glyphosate for Orobanche aegyptiaca control in Vicia sativa and Brassica napus. Weed Sci. 47:486-491. Neal, J. C., W. A. Skroch, and T. J. Monaco. 1985. Effect of plant growth stage on glyphosate absorption and transport in ligustrum (Ligustrum japonicum) and blue pacific juniper (Juniperus conferta). Weed Sci. 34:115-121. Newton, M., K. M. Howard, B. R. Kelpsas, R. Danhaus, C. Marlene, and S. Dubelman. 1984. Fate of glyphosate in an Oregon forest ecosystem. J. Agric. Food Chem. 32:1144-1151. Newton, M., L. M. Horner, J. E. Cowell, D. E. White, and E. C. Cole. 1994. Dissipation of glyphosate and aminomethylphosphonic acid in north American forest. J. Agric. Food Chem. 42:1795-1802. Nomura, N. S. and H. W. Hilton. 1977. The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Res. 17: 113–121. Pipke, R. and N. Amrhein. 1988. Degradation of phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol. 54:1293-1296. Pline, W. A., A. J. Wilcut, K. L. Edmisten, and R. Well. 2001. Absorption and translocation of glyphposate in glyphosate-resistant cotton as influenced by application method and growth stage. Weed Sci. 49:460-467. Reddy, K. N. 2000. Factors affecting toxicity, absorption, and translocation of glyphosate in Redvine (brunnichia ovata). Weed Technol. 14:457-462. Ruppel, M. L., B. B. Brightwell, J. Schaefer, and J. T. Marvel. 1977. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25:517-528. Sandberg, C. L., W. F. Meggitt, and D. penner. 1980. Absorption, translocation and metabolism of C14-glyphosate in several weed species. Weed Res. 20: 195-200. Schuette, J. 1998. Glyphosate degradation pathway. http://0rz.tw/3c2Hb Segawa, R., C. Ando, A. Bradley, J. Walters, R. Sava, C. Gana, and K. S. Goh. 2001. Dissipation and off-site movement of forestry herbicides in plants of importance to California. http://0rz.tw/262Jl Sharma, S. D. and M. Singh. 2001. Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida Beggardweed (Desmodium tortuosum). Crop Prot. 20:511-516. Soedarjo, M. and D. Borthakur. 1996. Mimosine produced by the tree-Legume Leucaena provide growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil 186:87-92. Soedarjo, M. and D. Borthakur. 1998. Mimosine, a toxin produced by the tree-legume leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol. Biochem. 30:1605-1613. Song I. J., S. K. Hong, H. O. Kim, B. Byund, and Y. Gin. 2005. The pattern of landscape patches and in vasion of naturalized plants in developed areas of urban Seoul. Landsc. Urban Plan. 70:205-19. Stocker, R. K. and D. R. sanders. 1997. Control of melaleuca seedlings and trees by herbicides. J. Aquat. Plant Manage. 35:55-59. Stratton, G. W. and K. E. Estewart. 2006. Glyphosate effects on microbial biomass in a coniferous forest soil. Environ. Tioxicol. Water Qual. 7:223-236. Sprankle, P., W. F. Meggitt, and D. Penner. 1975. Absorption, Mobility, and microbial degradation of glyphosate in the soil. Weed Sci. 23:229-234. Sprankle, P., W. F. Meggitt, and D. Penner. 1975. Absorption, action, and translocation of glyphosate . Weed Sci. 23:235-240. Thompson, D., G. Pitt, M. Buscarini, B. Staznik, and R. Thomas. 2000. Comparative fate of glyphosate and triclopyr herbicides in the forest floor and mineral soil of and Acadian forest regeneration site. Can. J. For. Res. 30:1808-1816. Veiga, F., J. M. Zapata, M. L. Fernandez, and E. Alvarez. 2001. Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. Sci. Total Environ. 271:135-144. Walton, C. S. 2003. Leucaena (Leucanea leucocephala) in Queensland. Department of natural Resources and Mines,Qld. Wang, C. Y. 2001. Effect of glyphosate on aromatic amino acid metabolism in purple nutsedge (Cyperus rotundus). Weed Technol. 15:628-635. Wang, H. H. and S. F. Hung. 2005. The Effect of herbicide injection on leucaena control and techniques of forest restoration. Weed Sci. Bull. 26:15-32. Wendel, G. W. and J. N. Kochenderfer. 1982. Glyphosate controls hardwoods in West Virginia. Res. Pap. NE-497. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.USA. Willoughby, I. 1999. Control of coppice regrowth in roadside woodlands. Forestry 72:308-312.
摘要: 銀合歡於恆春地區嚴重蔓延,根據林試所恆春研究中心以嘉磷塞注射樹幹方式獲致良好控制效果,本研究進ㄧ步進行嘉磷塞不同濃度處理效果,及嘉磷塞施用後在樹體及土壤之殘毒監測。研究結果顯示不同濃度嘉磷塞處理下,施藥後ㄧ週於注射孔上方約350 cm之銀合歡小葉快速凋萎。整株植株於處理藥劑後其傷害在施藥後1個月最為嚴重,雖然施藥後2個月受害植株開始萌新芽,但新芽多呈褐化畸形。檢測藥劑殘留量顯示藥劑隨時間逐漸消褪,施藥後五個月藥劑殘留量降至施用量的10%,根部則於施藥後三個月偵測出較高殘留量但亦隨時間迅速下降。進ㄧ步以HPLC及放射性同位素分析藥劑流向,研究結果顯示施藥初期藥劑可能於木質部藉擴散方式向周圍轉運,其中大量藥劑累積於兩注射孔中間之韌皮部,並隨時間進行雙向運輸,推測韌皮部為藥劑轉運之主要通道。施藥後45天發現注射孔上方韌皮部有較高之藥劑殘留,於60天後各部位藥劑濃度均隨時間下降,根據放射性同位素活性偵測亦顯示相似變化,然而60天後注射孔上方之放射活性降低而下方放射活性反而增加。探究原因推測由於苗木施藥後於注射孔下方逐漸萌新芽,可能因同化物質source-sink關係改變,使嘉磷塞及其代謝物經由韌皮部重新分配至植體下方,而配合TLC及放射活性分析可以確認此時嘉磷塞除了降解為少部分已知的AMPA、及較多量之sarcosine之外,尚有大量之未知代謝物。
Leucaena leucocephala, an exotic species widely spread in Hengchun peninsula, Taiwan, was controlled efficiently by a herbicide of glyphosate . In this study, effects of glyphosate with three different concentrations but an equal amount of dosage were compared, and changes of glyphosate residues in plants and soil environment were also detected. Experimental results showed that rapid wilting of leaflets at height of 350 cm away from glyphosate injection site on basal trunk one week after treatment was found, and serious injury of whole plant occurred within one month. Although newly-formed buds appeared on basal trunk with time, subsequent bud growth was retarded and leaflets were small, chlorotic and deformed. Glyphosate detection showed that residues in plants dissipated rapidly in 3 months, and decreased to 10% 5 months after treatment. Further experiment to study glyphosate translocation in L. leucocephala with HPLC and 14C-glyphosate radioactivity assessment, suggested that most glyphosate residues in xylem likely diffused to surrounding tissues initially, and then temporarily accumulated in phloem located between two injection sites before translocating out subsequently. Therefore, it is implicated that phloem is a primary translocation channel of glyphosate. Glyphosate dissipation analysis revealed that more residues were found in upper phloem 45 days after treatment (DAT) and decreased significantly thereafter. Althrough glyphosate in whole plant including upper, middle and lower parts, was decreased after 45 DAT, radioactivities of 14C-glyphosate and its derivatives in lower phloem accumulated dramatically 90 DAT. The redistribution of 14C-glyphosate and its metabolites to lower phloem of basal trunk is partially resulted from an alteration of source-sink relationship of photosynthate due to the formation of newly-formed leaflets on basal trunk.
URI: http://hdl.handle.net/11455/36866
其他識別: U0005-2706200716413900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706200716413900
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.