Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3688
標題: 以續流式反應器合成鄰-羥基苯甲酸丁酯之超音波輔助三液相相間轉移催化反應研究
Synthesis of o-Hydroxybenzoic Acid Butyl Ester in Continuous Flow Reactor via Ultrasound Assisted Tri-Liquid Phase-Transfer Catalysis
作者: 彭冠益
Peng, Guan-Yi
關鍵字: Phase-transfer catalyst
相間轉移觸媒
third-liquid phase
sonochemistry
space time
continuous flow reaction
o-hydroxybenzoic acid n-butyl ester
第三液相
超音波化學
滯留時間
續流式反應器
鄰-羥基苯甲酸丁酯
出版社: 化學工程學系所
引用: [1] J. Jarrouse,”The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives.” C.R. Heabd.Seances Acad. Sci., C232,1424(1951) [2] C. M. Starks,”Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”,J. Am. Chem. Soc.93(1),195(1971) [3] A.W. Herriott, D. Picker, Phase transfer catalysis. An evaluation of catalysts, J. Am. Chem. Soc. 97 2345-2349 (1975) [4] C.M. Stark, C. Liotta and M. Halperm, “Phase-Transfer Catalysis, Application and Industrial Perspective” , Chapman & Hall, London, (1994) [5] C.J. Pederson, “Cyclic Polyethers and Their Complexes with Metal Salts , J.Am. Chem. Soc. , 89,7071-7036 (1967a) [6] D.J. Sam, H.E. Simmons,Crown polyether chemistry. Potassium permanganate oxidations in benzene, J. Am. Chem. Soc. 94-104 [7] H.E. Hennis, J.P. Easterly, R.L. Collins, L.R. Thompson, “Ester from the Reaction of Alkyl Chlorides and Sodium Salts of Carboxylic Acids” , Ind. Eng. Chem. Prod. Res. Pev. 6, 193-195 (1967) [8] H.E. Hennis, L.R. Thompson, J. P. Long, “Ester from the Reaction of Alkyl Halides and Salts of Carboxylic Acids. Comprehensive Study of Amine Catalysis”, Ind. Eng. Chem. Prod. Res. Pev. 96-104 (1968) [9] G.D. Yadav, Y.B. Jadhav,“Kinetics and Modeling of Liquid-Liquid Phase Transfer Catalysed Synthesis of p-Chloropenyl Acetonitrile: Role of Co-catalyst in Intensification of Rates and Selectivity” , Journal of Molecular Catalysis A: Chemical, 192, 41-52 (2003) [10] L.J. Mathias, R.A. Vaidya, “Inverse phase transfer catalysis. First report of a new class of interfacial reactions”, J. Am. Chem. Soc. , 108(5) , 1093-1094 (1986) [11] M. Halpen, H.A. Zahalka, Y. Sasson, M.J. Rabinovitz, Org. Chem. , 50, 5088 (1985) [12] P. Tundo, P. Venturello,“Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts” , J. Am. Chem. Soc. , Vol. 101, pp. 6606-6613 (1979) [13] C.M. Starts, C.L. Loitta, and M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall” , New York (1994) [14] M. Fedorynski, K. Wojciechowski, Z. Matacz, and M. Makosa, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems” [15] H.M. Yang, P.I. Wu, “Kinetics of phase-transfer catalized esterification of aliphatic dicarboxylate in solid-liquid system.” , Applied Catalysis, 209, 17-26 (2001) [16] H.M. Yang, H.C. Liu, “Kinetics for synthedizing benzyl salicylate via solid-liquid phase catalysis”, Applied Catalysis, 258, 25-31 (2004) [17] S.L. Regen, J.J. Besse and J. Mcliick, “Solid Phase Cosolvent Triphase Tatalytic Hydrolysis of 1-Bromoadamantane”, J. An. Chem. Soc., 101, 166-120 (1979) [18] L.K. Doraiswamy, and S. Desikanl, “Enhanced Activity of Polymer-Supported Phase Transfer Catalysts”, Chemical Engineering Science, 55, 6119-6127 (2000) [19] R. Neumann, and Y., “Mechanism of Base Catalyzed Reactions in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”,J.Org.Chem.,49, 3448-3451 (1984) [20] D.H. Wang, H.S. Weng, “Preliminary Study on the Role Played by the Third Liquid Phase in Phase Transfer Catalysis” , Ind. Eng. Chem. Res., 43, 2019-2024 (1988) [21] T. Ido, M. Saiki, S Goto, “Effect of Addition of Methanol on Catalytic Activity of Polyethylene Glycols as Phase Transfer Catalyst”, Kagaku Kogaku Robunshu., 15(2) , 403 (1989) [22] Y. Sasson, S. Magdassi, and D. Mason, “Role of a Third Liquid Phase in Phase-Transfer Catalysis”, J. Org Chem., 56, 7229-7232 (1991) [23] C.M Starks, C. Liotta, M. Halpern, Phase Transfer Catalysis, Fundamentals, Application and Industrial Perspectives; Chapman & Hall : New York (1994) [24] D.H. Wang, H.S. Weng,“Phase transfer catalytic reaction between n-butyl bromide and sodium phenolate-formation of the third liquid phase and its effect” Journal of the Chinese Institute of Chemical Engineers, 26(3), 147-156 (1995) [25] H.S. Weng, C.M. Wang, D.H. Wang, “A Preliminary Study on a Continuous Flow Stirred Vessel Reactor for Tri-Liquid-Phase Phase Transfer Catalysis” , Ind. Eng. Chem. Res. 36, 3613-3618 (1997) [26] H.S. Weng, S.M. Kao, and H.C. Hsiao, “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly ethylene glycols-600 as a catalyst. 1. Analysis of Factor Affecting the Formation of a Third Liquid Phase” , Ind. Eng. Chem. Res., Vol. 39, 2772-2778 (2000) [27] Tadaatu Ido, Tomoya Shimizu, Gong Jin, Shigeo. Goto, “Rate and selectivity of phenyl benzoate production in phase separable CSTR by use of phase transfer catalytic system as a third liquid phase” Journal written in Japanese. 29(4), 534-540 (2003) [28] 毛致中,第三液相相間轉移觸媒在三級胺聯合效應下催化鄰-羥基苯甲酸鈉酯化反應動力學研究,國立中興大學化學工程研究所碩士論文 (2003) [29] 黃郁碩,以續流式反應器合成鄰-羥基苯甲酸苯甲酯之第三液相相間轉移催化反應動力學研究,國立中興大學化學工程研究所碩士論文 (2005) [30] H.M. Yang, C.C. Li, “Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis” , Journal of Molecular Catalysis. A, Chemical, Vol. 246, 255-262 (2006) [31] 陳建行,超音波輔助三液相相間轉移觸媒合成鄰-羥基苯甲酸丁酯之反應動力學研究,國立中興大學化學工程研究所碩士論文 (2007) [32] H.M. Yang, “A Theoretical Model for Phase Transfer Catalyzed Reaction with the Third-Liquid-Phase” , Journal of the Chinese Institute of Engineers, Vol. 21, No. 4, 399-408 (1998) [33] H.J. Ploehn, and J.J. Krueger,“Modeling Mass Transfer and Interfacial Reactions in Three Liquid Phase Transfer Catalysis” , MD Amiridis. Ind. Eng. Chem. Res., 40, 3158-3163 (2001) [34] H.M. Yang,P.J. Lin , “Kinetics for etherification of sodium o-nitrophenoxide via third-liquid phase-transfer catalysis”, Journal of Molecular Catalysis. A. Chem. Vol.235, pp.293-301 (2005) [35] 王昌鈞,<有機化學>,第二版,藝軒圖書出版社 [36] G. Maerker, Carmichael, J.F., and Port, W.S., “Glycidl Ester Method of preparation and study of Some reaction Variables” , J. Org. Chem. 26, 2681 (1961) [37] J.L. Louis, Synthetic organic sonochemistry, Plenum Press, New York and London [38] http://www.scs.uiuc.edu/~suslick/britannica.html [39] http://www.scs.uiuc.edu/~suslick/britannica.html [40] http://www.blossombio.com.tw/Products/UltrasonicCleaner.html [41] http://203.64.35.103/edu/radio/special/index.htm [42] M.H. Entezari, A.A. Shameli, Phase-transfer catalysis and ultrasonic wave I. Cannizzaro reaction. Ultrasonics Sonochemistry 7, 169-172 (2000) [43] M.H. Entezari, A. Keshavarzi, Phase-transfer catalysis and ultrasonic wave II: saponification of vegetable oil. Ultrasonics Sonochemistry 8, 213-216 (2001) [44]M.L. Wang, Venugopal Rajendran, Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene - A kinetic study. Ultrasonics Sonochemistry 14, 46-54 (2007) [45]秦國平,郭錫坤,天然氣化學,第29卷(2004) [46]劉素萍,賈永富,山西師範大學學報,第1期(2005) [47]Fatemeh F. Bamoharram, Majid M. Heravi, Mina Roshni, Preyssler catalyst, [NaP5W30O110]14-: A green, efficient and reusable catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols. Applied Catalyst A: General 302, 42-47 (2006)
摘要: 本研究是探討以超音波輔助第三液相相間轉移觸媒在續流式反應器內合成鄰-羥基苯甲酸丁酯之反應動力學研究,操作變數包括攪拌速率、觸媒種類效應、觸媒添加量效應、不同有機溶劑效應、溫度效應、無機鹽類效應、反應物添加量效應、滯留時間、超音波頻率及功率效應,進而得到較適當的反應條件。 超音波化學是利用超音波促進化學反應的技術,超音波可以提供化學反應所需的能量促進反應進行。反應器的設計是將第三液相保持於反應器中間,藉由水相及有機相進料流動穿過第三液相進行反應。 鄰-羥基苯甲酸丁酯的產率會隨著滯留時間增加而增加,因此將水相及有機相的進料流速控制在0.3 ml/min。有機相反應物溴丁烷用量增加時,反應性提升,而超音波頻率越低,則可獲得較高的產率,當攪拌轉速超過150 rpm時可克服質傳阻力。本研究亦建立續流式反應器之反應機制及動力模式,以求取視反應速率常數。 在以提高產率及成本效益的前提下,本系統在反應條件為攪拌轉速150 rpm,加入觸媒為溴化四丁基鏻0.0125莫耳,超音波頻率28 kHz、功率300 W,反應溫度70 ℃下,可得有機相產率78.2 %。在反應溫度50~80 ℃的範圍內,所求得的活化能為14.5 kcal/mol。 當結合超音波及攪拌操作時,反應性可大幅提升,在不使用攪拌及超音波輔助下產率達49.7 %,加入超音波的輔助可使產率提高至58.2 %,在攪拌操作下且不使用超音波輔助可使產率達65.1%,同時加入攪拌及超音波輔助產率可達78.2 %,相較於不使用攪拌及超音波輔助產率可提升57.3 %。
The present study is to investigate the kinetics of synthesizing o-hydroxybenzoic acid n-butyl ester in a continuous flow reactor via ultrasound-assisted tri-liquid phase-transfer catalysis. The operating parameters including agitation speeds, types of catalyst, amount of catalyst, types of solvent, reaction temperature, types of inorganic salt, amount of reactant, space time, ultrasonic frequency and power, were all performed to find the optimal reaction conditions. Sonochemistry is a technique to increase chemical reaction rate by ultrasounic irradiation. Ultrasound assisted effect can energize to promote the chemical reaction. The reactor was designed by keeping the third-liquid phase in middle part of the reactor, and both of the aqueous phase and organic phase flowing through the third-liquid phase for reaction. The yield of o-hydroxybenzoic acid n-butyl ester increases with the space time, so the flow rates of aqueous phase and organic phase were both controlled at 0.3 ml/min. Increasing the organic reactant concentration butylbromide can increae the reaction activity. The lower ultrasonic frequency makes the yield of product higher. Mass transfer resistance can be neglected by agitation speed more than 150 rpm. The mechanism and kinetics in a continuous-flow reaction were proposed, and we can calculate the kapp by the model. For high product yield and cost effective, the system condition of agitation speed at 150 rpm, catalyst tetrabutylphosphonium bromide (TBPB) at 0.0125 mol, ultrasonic frequency at 28 kHz and power 300 W, the reaction temperature at 70 ℃, the product in the organic phase was 78.8 %. The apparent activation energy can be obtained as 14.5 kcal/mol in the range of 50~80 ℃. Combining agitation and ultrasound irradiation makes the reaction activity advance a lot. The yield of product was 49.7 % without any agitation and ultrasound assisted. Under the agitation, the yield of product was 65.1% without any ultrasound assisted. The yield of product raised to 58.2 % with ultrasound promoting the reaction. Using agitation and ultrasound at the same time, the product yield was obtained 78.2 %, raising the product yield by 57.3% higher than that without any assistance of agitation and ultrasound.
URI: http://hdl.handle.net/11455/3688
其他識別: U0005-1706200819281700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1706200819281700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.