Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36880
標題: 水稻突變體對巴拉刈除草劑反應差異性之研究
Study on the differential responses of rice mutants to paraquat
作者: 歐人輔
Ou, Jen-Fu
關鍵字: rice
水稻
paraquat
chlorophyll fluorescence
巴拉刈
葉綠素螢光
出版社: 農藝學系所
引用: 方麗萍。2006。2006年台灣除草劑市場概要。中華民國雜草學會簡 訊。第01031期。2006.10.02. 2008.12.30. <http://140.127. 10.25/weed/.> 費雯綺、王喻其。2007。植物保護手冊。台中,台灣。行政院農業 委員會農業藥物毒物試驗所。 Alizadeh, H. M., C. Preston, and S. B. Powles. 1998. Paraquat-resistant biotypes of Hordeum glaucum from zero-tillage wheat. Weed Res. 38: 139-142. Amsellem, Z., M. A. K. Jansen. A. R. J. Driesenaar, and J. Gressel. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol. 103: 1097-1106. Bishop, T. S., S. B. powles, and G. Cornic. 1987. Mechanism of paraquat resistance in Hordeum glaucum. Π. Paraquat uptake and translocation. Aust. J. Plant Physiol. 14: 539-547. Bj&ouml;rkman, O., and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489-504. Bolh&aacute;r-nordenKampf, H. R., and M. G&ouml;tzl. 1992. Chlorophyll fluoreszenz als Indikator der mit der Seeh&ouml;he zunehmenden Stre&szlig;belastung von Fichtennadeln. FBVA- Berichte Schriftenreihe der Forstlichen Bun- desversuchsanstalt 67: 119-131. Bradshaw, L. D., M. Barrett, and C. G. Poneleit. 1992. Physiological basis for differential bentazon susceptibility among corn (Zea mays) inbreds. Weed Sci. 40: 522-527. Carr, R. J. G., R. F. Bilton, and T. Atkinson. 1985. Mechanism of biodegradation of paraquat by Lipomyces starkeyi. App. Environ. Microbiol. 49: 1290-1294. De Prado, R., N. Lopez-Martinez, and J. Gonzalez- Gutierrez. 2000. Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pestic. Biochem. Physiol. 67: 114- 124. Donahue, J. L., C. M. Okpodu, C. L. Cramer, E. A. Grabau, and R. G. Alscher. 1997. Responses of antioxidants to paraquat in pea leaves. Plant Physiol. 113: 249-257. Fayed, M. T., T. Y. Rizk, E. E. Hassanein, and A. S. O. Kholosy. 1989. Mechanism of paraquat-resistance in Conyza linifolia biotypes. Ann. Agric. Sci. (Cairo) 34: 989-1001. Foyer, C.H., M. Lelandais, and K.J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92: 696-717. Fuerst, E. P., H. Y. Nakatani, A. D. Dodge, D. Penner, and C. J. Arntzen. 1985. Paraquat resistance in Conyza. Plant Physiol. 77: 984-989. Gressel, J., and E. Galun. 1994. Genetic controls of photooxidative tolerance. In Foyer, C. H., and P. M. Mullineaux. eds, Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp. 237-274. Guo, Z., M. Huang, S. Lu, Z. Yaqing, and Q. Zhong. 2007. Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidant and chlorophyll a fluorescence. Acta. Physiol. Plant. 29: 39-46. Hart, J. J., J. M. Ditomaso, D. L. Linscott, and L.V. Kochian. 1992. Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiol. 99: 1400-1405. International survey of herbicide resistant weeds by HRAC, NAHRAC, and WSSA (2008). <http://www.Weedscience.com.> 2008.12.30. Islam, A. K. M. R., and S. B. Powles. 1988. Inheritance of resistance to paraquat in barley grass Hordeum glaucum Steud. Weed Res. 28: 393-397. Islam, A. K. M. R., and S. B. Powles. 1991. Attempts to transfer paraquat resistance from barley grass (Hordeum glaucum Steud.) to barley and wheat. Weed Res. 31: 395-399. Kao, S. M., and H. M. Hassan. 1985. Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli. J. Biol. Chem. 260: 10478-10481. Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349. Lasat, M. M., J. M. DiTomaso, J. J. Hart, and L. V. Kochian. 1997. Evidence for vacuolar sequestration of paraquat in roots of a paraquat-resistance Hordeum glaucum biotypes. Physiol. Plant. 99: 255-262. Lichtenthaler, H. K. 1996. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148: 4-14. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51: 659- 668. Minton, K. W., H. Tabor, and C. W. Tabor. 1990. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. USA 87: 2851-2855. Norman, M. A., E. P. Fuerst, R. J. Smeda, and K. C. Vaughn. 1991. Paraquat resistance mechanisms in hairy fleabane (Canyza bonariensis). Plant Physiol. 96S: 131. Norman, M. A., E. P. Furest, R. J. Smeda, and K. C. Vaughn. 1993. Evaluation of paraquat resistance mechanisms in Conyza. Pest. Biochem. Physiol. 46: 236- 249. Norman, M. A., R. J. Smeda, K. C. Vaughn, and E. P. Fuerst. 1994. Differential movement of paraquat in resistant and sensitive biotypes of Conyza. Pest. Biochem. Physiol. 50: 31-42. Perl-Treves, R., and E. Galun. 1991. The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17: 745-760. Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 114: 695-704. Powles, S. B., and G. Cornic. 1987. Mechanism of paraquat resistance in Hordeum glaucum. I. Studies with isolated organelles and enzymes. Aust. J. Plant Physiol. 14: 81-89. Potter, J. R., and W. P. Wergin. 1975. The role of light in bentazon toxicity to cocklebur: physiology and ultrastructure. Pestic. Biochem. Physiol. 5: 458- 470. Preston, C., J. A. M. Holtum, and S. B. Powles. 1992. Do polyamines contribute to paraquat resistance in Hordeum glaucum? In: N. Murata (Ed.), Research in Photosynthesis, vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 571–574. Sankula, S., M. P. Braverman, and J. H. Oard. 1998. Genetic analysis of glufosinate resistance crosses between transformed rice (Oryza sativa ) and red rice (Oryza sativa). Weed Technol. 12: 209-214. Sauer, K., and M. Debreczeny. 1996. Fluorescence. In: Amesz, J., A. J. Hoff, (eds) Biophysical techniques in photosynthesis. Kluwer, The Netherlands, pp. 41-46. Schreiber, U. 1986. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth. Res. 9: 261-272. Schreiber, U., W. Bilger, and C. Neubauer. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis (eds E. D. Schulze, and M. M. Caldwell), pp. 49-70. Springer-Verlag, Berlin. Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log- logistic analysis of herbicide dose-response relationship. Weed Technol. 9: 218-227. Shaaltiel, Y., N. H. Chua, S. Gepstein, and J. Gressel. 1988. Dominant pleiotropy controls enzymes co- segregating with paraquat resistance in Conyza bonariensis. Theor. Appl. Genet. 75: 850-856. Shaaltiel, Y., and J. Gressel. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pest. Biochem. Physiol. 26: 22-28. Shaaltiel, Y., and J. Gressel. 1987. Biochemical analysis of paraqaut resistance in Conyza leads to pinpointing synergists for oxidant generating herbicides. In: Greenhalgh, R., and T. R. Roberts (eds.), Proceedings of the 6th international congress of pesticide chemistry: Pesticide science and biotechnology. Blackwells Scientific Publications, Oxford, UK (1987): 183-186. Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56: 320–326. Shim, I. S., Y. Momose , A. Yamamoto, D. W. Kim, and K. Usui. 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul. 39: 285-292. Smisek, A., C. Doucet, M. Jones, and S. Weaver. 1998. Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepper weed (Lepidium virginicum) from Essex County, Ontario.Weed Sci. 46: 200-204. Szigeti, Z., and E. Lehoczki. 2003. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manage. Sci. 59: 451-458. Szigeti, Z., I. Racz, and D. Lasztity. 2001. Paraquat resistance of weed-the case of Conyza canadensis L. Cronq. Z Naturforsch 56c: 319-328. Tanaka, Y., H. Chisaka, and H. Saka. 1986. Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. canadensis. Plant Physiol. 66: 605-608. Vaughn, K. C., and E. P. Fuerst. 1985. Structural and physiological studies of paraquat-resistance Conyza. Pest. Biochem. Physiol. 24: 86-94. Vaughn, K. C., M. A. Vaughan, and P. Camilleri. 1989. Lack of cross- resistance of paraquat-resistant hairy fleabane (Conyza bonariensis) to other toxic oxygen generators indicates enzymatic protection is not the resistance mechanism. Weed Sci. 37: 5-11. Werner, C., and O. Correia. 1996. Photoinhibition in cork- oak under stress: influence of the barkstripping on the chlorophyll fluorescence emission in Quercus suber L. Trees 10: 288-292. Yamasue, Y., K. Kamiyama, Y. Hanioka, and T. Kusanagi. 1992. Paraquat resistance and its inheritance in seed germination of the foliar-resistant biotypes of Erigeron canadensis L.and E. sumatrensis Retz. Pest. Biochem. Physiol. 44: 21-27. Ye, B., H. H. M&uuml;ller, J. Zhang, and J. Gressel. 1997. Constitutively elevated levels of putrescine and putrescine-generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol. 115: 1443-1451. Ye, B., and J. Gressel. 2000. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211: 50-61. Youngman, R. J., and A. D. Dodge. 1980. Paraquat resistance in Conyza. Plant Physiol. 65(suppl): 6, 12.
摘要: 本研究主要針對水稻台農67號經由疊氮化鈉(NaN3)誘變所得之1,343個突變體(M7),篩選對巴拉刈(paraquat)具抗、感性之突變體。在巴拉刈處理下,根據水稻台農67號及富士光V4期幼苗的傷害指數與黃化百分比,利用非線性回歸分析之log-logistic模式,由水稻對巴拉刈之劑量反應(dose-response)分析,推估引起植株傷害達50%之藥劑濃度(ED50),作為抗、感性突變體之篩選劑量。調查供試之1,343個突變體在0.01 mM巴拉刈處理後之傷害指數,初步選出較具巴拉刈感性(PS)之6個品系,分別為81、802、875、948、1081及1192。之後分別以0.1及0.2 mM巴拉刈處理,篩選出較具巴拉刈抗性(PR)之7個品系,包括:72、713、881、882、883、986及1067。另進行抗、感性突變品系分蘗期葉片片段之傷害指數調查,發現PR-72與PS-1192較其他突變品系具有較大抗、感性。本研究進一步利用葉綠素螢光分析確立世代間與品系間之抗、感程度差異。研究顯示不同世代間,在巴拉刈處理下抗性突變品系PR-72的光系統II光化學最大效能(Fv/Fm)表現皆顯著高於感性突變品系PS-1192。進一步分析抗、感性突變品系之最小螢光量(Fo)及最大螢光量(Fm),顯示在巴拉刈處理下,感性突變體之光系統II反應中心電子傳遞效率顯著下降。 本研究經篩選得到M9世代之72-16-4與1192-11-5兩個品系,以光系統II光化學最大效能表現之相對頻度分析,顯示巴拉刈處理下,依抗、感性突變體對巴拉刈抗性表現可區分為兩族群,其中PS-1192在不同世代的表現較感性,而PR-72則表現較抗性,且抗、感族群世代間表現相近。本研究將進一步以抗性品系72-16-4及感性品系1192-11-5進行雜交後代抗性表現分析,俾了解巴拉刈抗性之遺傳特性。
Paraquat-resistant (R) and -susceptible (S) rice plants were screened successfully from 1,343 rice mutants (M7), derived from sodium azide (NaN3) treatment, in this study. Screening system was established based on the dose-response analysis of rice cv. Tainung 67 and Japanese cv. FSK to paraquat, and the ED50 of around 0.1 mM paraquat observed has been used as a reference dose for subsequent screening process. According to injury index and yellow percentage of rice seedlings treated with paraquat at V4 stage, six S lines (81, 802, 875, 948, 1081 & 1192) and seven R lines (72, 713, 881, 882, 883, 986 & 1067) were firstly selected. Further screening at tillering stage based on the injury of leaf segment showed that the line 72 and 1192 were the most resistant and susceptible lines, respectively. In order to ensure the accuracy of paraquat resistance measurement, the instrumental assay, the chlorophyll fluorescence determination, was used to detect the differential changes of paraquat damage between R and S lines. Measurement of the maximal efficiency of PSII photochemistry (Fv/Fm) found that the line 72 was more resistant to paraquat than the line 1192, and this change was maintained between two generations (M7 and M8). Further screening process and comparison of paraquat resistance between two generations (M8 and M9) similar to the method described above confirmed that the line 72-16-4 and 1192-11-5 were the most resistant and susceptible lines, respectively, at the generation M9, and the genetic behavior of paraquat resistance we obtained in this study will be explored through the hybridization and back-cross test in the near future.
URI: http://hdl.handle.net/11455/36880
其他識別: U0005-0502200916082400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200916082400
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.