Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36882
標題: 澎湖銀合歡之分布、發芽特性與剋他作用 及其防除效果研究
Distribution, germination characters, allelopathy and chemical control of Leucaena leucocephala (Lam.) de Wit in Penghu
作者: 黃琛瑜
Huang, Chen-Yu
關鍵字: Leucaena leucocephala
銀合歡
germination
allelopathy
herbicide
發芽
剋他作用
除草劑
出版社: 農藝學系所
引用: 王相華,洪聖峰。2005。銀合歡藥劑注射防除效果及林相復舊方式。中華民國雜草學會會刊 26: 15-31。 王賢杰。1980。滲透潛勢對銀合歡種子發芽之效應。國立臺灣大學森林學系碩士論文。台北。 呂福原,陳民安。2002。墾丁國家公園外來種植物對原生植群之影響以銀合歡為例。墾丁國家公園管理處保育研究報告 112: 2-26。 李培芬。2005。台灣的自然資源與生態資料庫 II 綠色大地。pp.152-159。行政院農業委員會林務局。台北。 徐玲明、鄭佳芳。2004。標準作業手冊7-重要雜草監測。pp. 18-20。行政院農業委員會農業藥物毒物試驗所。台中。 徐玲明、蔣慕琰。1993。台灣草坪雜草之種類調查及植群分析。中華民國雜草學會會刊 14: 79-92。 陳一正。1994。澎湖植群之研究。國立中興大學森林學系碩士論文。台中。 陳正慧、李載鳴。2005。應用GIS分析澎湖地區植群分布之特性。第三屆土地研究學術研討會-國土規劃與永續經營。逢甲大學。 陳高樑。2003。獎勵平地造林推動農地再造運動-談銀合歡防除根本之道。pp. 1-3。澎湖縣政府農漁局。澎湖。 郭耀綸。1983。銀合歡之植物相剋潛能研究。國立臺灣大學森林學系碩士論文。台北。 郭耀綸、王相華、楊月玲。2003。台灣南部二種優勢入侵植物銀合歡及小花蔓澤蘭的生態性狀及防治。行政院農業委員會動植物防疫檢疫局入侵種生物管理研討會論文集。pp. 47-55。 蔣永正、蔣慕琰。2006。農田雜草與除草劑要覽。pp. 42-55。行政院農業委員會農業藥物毒物試驗所。台中。 劉棠瑞、蘇鴻傑。1976。森林植物生態學。pp. 196-215。台灣商務印書館。台北。 劉棠瑞、廖日京。1980。樹木學(上)。pp. 456-457。台灣商務印書館。台北。 蕭志榮。2006。澎湖群島植物分布與島嶼植物地理學之研究。靜宜大學生態學系碩士論文。台中。 Akinola, J. O., P. A. Iji, S. O. Bonidefaiye, and S. A. S. Oloruniu. 1999. Studies on seed germination and seedling emergence in Leucaena leucocephala (Lam.) de Wit cv. Peru. Seed Sci. Technol. 27:123-129. Chachalis, D., and K. N. Reddy. 2000. Factors affevting Campsis radicans seed germination and seedling emergence. Weed Sci. 48: 212-216. Daubenmire, R. F. 1968. Plant communities: a textbook of plant synecology. Harper & Row, New York. 300 pp. Fuerst, R. A. U. A., R. Soni, J. A. H. Murray, and K. Lindsey. 1996. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol. 112: 1023-1033. Gosling, P. G., Y. K. Samuel, and S. K. Jones. 1995. A systematic examination of germination temperature, chipping and water temperature/soak duration pretreatments on the seeds of Leucaena leucocephala. Seed Sci. Technol. 23: 521-532. Halliday and Somasegaran. 1982. Dilution of liquid Rhizobium cultures to increase production capacity of inoculant plant. Appl. Envuron. Microbiol. 44: 330-333. Hawton, D., I. D. G. Johnson, D. S. Loch, G. L. Harvey, J. M. T. Marley, W. H. L. Hazard, J. Bibo, and S. R. Walker. 1990. A guide to the susceptibility of some tropical crop and pasture weeds and the tolerance of some crop legumes to several herbicides. Tropical Pest Manage. 36: 147-150. Hegarty, M. P., C. P. Lee, G. S. Christie, R. D. Court, and K. P. Haydock. 1979. The goitrogen 3-hydroxy-4(1H)-pyridone, a ruminal metabolite from Leucaena leucocephala: effects in mice and rats. Aust. J. Biol. Sci. 32: 27-40. Hong, N. H., T. D. Xuan, T. Eiji, T. Hiroyuki, M. Mitsuhiro, and T. D. Khanh. 2003. Screening for allelopathic potential of higher plant from Southeast Asia. Crop Prot. 22: 829-836. Isaacs, M. A., E. C. Murdock, J. E. Toler, and S. U. Wallace. 1989. Effects of late-season herbicide applications on sicklepod (Cassia obtusifolia) seed production and viability. Weeds Sci. 37: 761-765. Kamada, Y., N. Oshiro, H. Oku, F. Hongo, and I. Chinen. 1996. Degradation of toxic mimosine by a hydrolytic enzyme of Leucaena Psyllids(Jumping plant lice). Biosci. Biotech. Biochem. 60 :351-352. Mcdonald. 2002. Germination response to temperature in tropical and subtropical pasture legumes. 1. Constant temperature. Aust. J. Exp. Agri. 42: 407-419. Mosca, P. J., H. B. Lin, and J. L. Hamlin. 1995. Mimosine, a novel inhibitor of DNAreplication binds to a 50 kDa protein in Chinese hamster cell. Nucleic Acids Res. 23: 261-268. Oppenhein, E. W., I. M. Nasrallah, M.G. Mastri, and P. J. Stover. 2000. Mimosine is a cell-specific antagonist of folate metabolism, J. Biol. Chem. 275: 19268-19274. Pandey, A. K., and U. N. Dwivedi. 2007. Induction, isolation and purification of mimosine degradation enzyme from newly isolated Pseudomonas putida STM 905. Enz. Microb. Technol. 40:1059-1066. Pratchett, D., and T. Triglone. 1990. Herbicides and Leucaena establishment. Trop. Grassl. 24: 37-40. Renz. 1936. Uber das mimosin. Z. Physiol. Chem. 244:153-158. Sahid, I., and Kalithasan. 1994. Effects of glufosinate-ammonium and terbuthylazine on germination and growth of two weed species(Asystasia gangetica: Paspalum conjugatum). Plant Prot. Quart. 9:15-19. Seefeldt, S. S., J. E. Jensen, and F. E. Patrick. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218-225. Seifert, J. R., and K. Woeste. 2002. Evaluation of four herbicides and tillage for weed control on 1-0 planted tree seedlings. North. J. Appl. Forest. 19:101-105. Shaukat, S. S., and N. Shafiq. 1998. Effects of simulated acid rain on germination and seedling growth of some wild and cultivated species. Rak. J. Biol. Sci. 1: 219-222. Silvane, V., G. F. Arthur, C. D. Rafael, and G. F. Alfredo. 2001. Regulation of mimosine accumulation in Leucaena leucocephala seedlings. Plant Sci. 161: 597-604. Smith, C. A., D. R. Shaw, and L. J. Newsom. 1992. Arrowleaf sida(Sida rhombifolia) and prickly sida (Sida spinosa): germination and emergence. Weed Res. 32: 103-109. Soedarjo, M., and D. Borthakur. 1998. Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol. Biochem. 12:1605-1613. Skinner, R. H., C. J. Nelson, and J. H. Coutts. 1996. Tall fescue growth after paraquat application to elongating or mature leaves. Agron. J. 88: 49-53. Tawata. 1990. Effective reduction and extraction of mimosine from Leucaena and the potential for its use as a lead compound of herbicides. In: Casida, J. E (Ed.), Pesticide and Alternatives. Elsevier Science Publishers, Amsterdam, pp. 541-544. Tawata, S., F. Hongo, K. Sunagawa, Y. Kawashima, and S.Yaga. 1986. A simple reduction method of mimosine in the tropical plant Leucaena. Sci. Bull. Coll. Agr. Univ. Ryukyus 33: 87-94. Teketay. 1998. Germination of Acacia origena, A. pilispina and Pterolobium stellatum in response to different pre-sowing seed treatments, temperature and light. J. Arid Environ. 38: 551-560. Thomson, D. P., J. G. Mcivor, and C. J. Gardener. 1983. The effect of seedbed type on the establishment of legumes and grasses at four sites in north queensland. Trop. Grassl. 17: 3-10. Wittwer, R. F., P. M. Dougherty, and D. Cosby. 1986. Effects of ripping and herbicide site preparation treatments on loblolly pine seedling growth and survival. South. J. Appl. Forest. 10: 259-257. Xuan, T. D., A. A. Elzaawely, F. Deba, M. Fukuta, and S. Tawata. 2006. Mimosine in Leucaena as a potent bio-herbicide. Agron. Sustain. Dev. 26: 89-97. Yasuhiro, K., N. Oshiro, H. Oku, F. Hongo, and I. Chinen. 1996. Degradation of toxic mimosine by a hydrollytic enzyme of Leucaena Psyllids (Jumping plant lice). Biosci. Biotech. Biochem. 60: 351-352.
摘要: 本研究調查澎湖本島銀合歡之分布,及其株型、樹幹直徑、樹高及生長狀況,結果顯示澎湖本島之銀合歡株型皆為夏威夷型,大都為胸徑2~4 cm,樹高2~4 m之低矮灌木,且多呈純林狀態分布,在秋季(11月份)植株生長從營養生長期至開花、結莢、落莢期皆有,而夏季之生長情況則多處於營養生長期至結莢期之間,且依據取樣點單位面積(株/4 m2)株數的推估每公頃之銀合歡林可能具有30,000~55,000株銀合歡。調查銀合歡林內及林外之草相差異,顯示兩季林內外之草相覆蓋率及出現樣區頻度皆以禾本科及菊科植物較高,而林內旋花科、蒺藜科、豆科、錦葵科及莎草科則生長受到抑制。利用銀合歡林內土壤及銀合歡葉片萃取液對數種蔬菜進行各項生物檢定,結果顯示萃取液對數種蔬菜的發芽及生長皆可造成不同程度的抑制,推測銀合歡林內土壤及葉片可能具有銀合歡所分泌之剋他物質,且葉片中所含有的剋他物質濃度又高於林內土壤,推測其可能為造成林內部分草種受抑制的可能原因之一。 另外本研究以銀合歡夏威夷型及薩爾瓦多型之種子,分別進行不同溫度、pH值、水分潛勢、播種深度及光照處理,調查其發芽特性。結果顯示薩爾瓦多型銀合歡種子在15 ~ 40 ℃溫度範圍處理14天後發芽率皆可達到60 %以上,而夏威夷型之發芽率則隨著溫度而提升,而在處理溫度達到40 ℃時開始下降,兩型之最適發芽溫度皆為35 ℃;試驗發現在土深5公分範圍內隨著播種深度的加深而會降低幼苗出土率,原因可能與光照較有關。此外水分滲透潛勢降低至-0.4 MPa之後完全抑制其發芽且夏威夷型較敏感,在pH值4.0 ~ 9.0之處理14天後則都能達到60~80 %之發芽率。針對化學除草劑防治銀合歡之研究,以各種不同作用機制除草劑處理兩型銀合歡,結果顯示兩型銀合歡種子於種子發芽階段對於GS抑制型除草劑固殺草較為敏感,而兩型銀合歡幼苗生長達到半數抑制的反應則對PS I抑制型除草劑巴拉刈較為敏感,且夏威夷型又略比薩爾瓦多型敏感。試驗結果亦可對銀合歡在種子發芽期及幼苗生長期之最適發芽條件及適用之除草劑進行了解,以做為進行環境控制管理及使用藥劑控制之參考。
Distribution and growth characters including plant type, trunk diameter, plant height and development stage of lead tree (Leucaena leucocephala L.), an exotic species in Penghu, Taiwan, were investigated. Experimental results showed that all lead tree plants in Penghu was Hawaii type and occurred in a pure forest, with plant height ranging from 2 to 4 m. Vegetative, flowering, podding and depodding stages of lead tree could be seen in fall, but only vegetative and podding stages appeared in summer. Comparing the difference of weed flora inside and outside the lead tree forest in Penghu, though both families, Poaceae and Asteraceae were widespread inside and outside lead tree forest, the distribution of five families, i.e., Convolvulaceae, Zygophyllaceae, Legurninosae, Malvaceae and Cyperaceae, were restricted to a certain extent by lead tree. In addition, bioassay using several vegetables as materials found that an allelopathic effect existed in lead tree plants and lead tree forest soil, and the former had higher effect than the latter. In order to explore the seed germination ability, germination of lead tree under different environmental conditions including temperature, pH, water potential, planting depths and light, were tested. Results showed that seed germination rate of Salvador type was stable and more than 60 % at temperature between 15 to 40℃, whereas that of Hawaii type was increased with temperature from 15℃, and started to decrease after 35℃. The optimal germination temperature of two types was 35℃. Beside, both planting depth and dark, as well as water potential lower than -0.4 MPa, also retarded seed germination. However, germination of both types was not affected by pH ranging from 4.0 to 9.0. The lead tree control using chemical herbicides with eight different action mechanisms showed that seed germination of lead tree was more susceptible to GS inhibitor glufosinate, and seedling growth was more susceptible to PS I inhibitor-paraquat. It was noticed that Hawaii type was a little more susceptible to herbicides than Salvador type.
URI: http://hdl.handle.net/11455/36882
其他識別: U0005-0702200903210100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0702200903210100
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.