Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36886
標題: 調節油菜生長和脂肪酸組成與其作為 生質柴油利用之研究
Study on regulation of growth , composition of fatty acids and utilization for biodiesel in Brassica napus L.
作者: 謝鎮安
Hsieh, Chen-An
關鍵字: Brassica napus L.
油菜
biodiesel
microwave extraction
生質柴油
微波萃取
出版社: 農藝學系所
引用: 王漢中。2005。發展油菜生物柴油的潛力問題與對策。中國油料作物學報27(2):74-76。 汪呈因。1975。作物育種學。初版。台北:正中出版社。pp.453-461 汪呈因。1980。特用作物學。初版。台北:國立編譯館。pp.155-164. 李唐、張志毓。2006。臺灣潛在的生質柴油料源對其產出生質柴油物性探討。出自”生物技術與綠色農業研討會專刊”,pp:67-73。 邱發祥、彭武男。1995。低芥酸油菜品種之育種研究。桃園區農業改良場研究報告 22:1-11。 胡凱康。1983。油菜品質及產量改良之遺傳研究。碩士論文。台北:國立臺灣大學農藝學研究所。 陳成、胡凱康。1982。油菜之遺傳與育種。科學農業30(1-2):6-11。 陳成、黃懿秦、盧煌勝。1977。油菜芥酸之遺傳。科學發展月刊5(12):1029-1034。 楊金興、林俊義、陳甘澍、賴瑞聲、劉新裕、賴永昌。2006。適合臺灣栽培之能源作物的研發方向。出自”生物技術與綠色農業研討會專刊”,pp:37-56。 盧煌勝、陳成。1976。油菜之栽培與育種。科學農業24(9-10):372-387。 盧煌勝、陳成。1977。油菜主要農藝性狀之遺傳。中華農學會報99:22-31。 羅秋雄。2006。油菜。綠肥作物栽培利用手冊。第二版。南投。行政院農委會農糧署。 Asokanthan, P. S., R. W. Johnson, M. Griffith, and M. Krol. 1997. The photosynthetic potential of canola embryos. Physiol. Plant. 101:353-360. Azcan, N., and A. Danisman. 2007. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86:2639-2644. Bao, X., M. Pollard, and J. Ohlrogge. 1998. The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant Physiol. 118 : 183-190. Barbosa, S. L., M. J. Dabdoub, G. R. Hurtado, S. I. Klein, A. C. M. Baroni, and C. Cunha. 2006. Solvent free esterification reactions using lewis acids in solid phase catalysis. Appl. Catal. A-Gen. 313 : 146-150. Barret, P., R. Delourme, M. Renard, F. Domergue, R. Lessire, and T. L. Roscoe. 1998. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor. Appl. Genet. 86: 177-186. Baysal, B. J., and D. A. Starmans. 1999. Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J. Supercrit. Fluid 14:225-234. Beare-Rogers, J. L., and E. Gordon. 1976. Myocardial lipids and nucleotides of rats fed olive oil or rapeseed oil. Lipids 11:287-289. Bondioli, P. 2004. The preparation of fatty acid esters by means of catalytic reactions. Top. Catal. 24:77-82. Buchanan, B., W. Grussem, and R. Jones. 2000. Biochemistry & Molecular biology of plants. 1st ed. USA. American Society of Plant Physiologist. pp. 456-527. Budavari S., M. J. O’Neil, A. Smith, P. E. Heckelman, and J. F. Kinneary. 1996. The merck index(an encycloperdia of chemicals, drugs, and biologicals).12th ed. USA: Merck research laboratories. Busch, K. L., G. L. Glish, and S. A. McLuckey. 1988. Mass spectrometry /mass spectrometry:techniques and applications of Tandem mass spectrometry. USA. VCH Publisher. Colucci, J. A., E. E. Borrero, and F. Alape. 2005. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc. 82:525–530. Culshaw, F., and C. Butler. 1992. A review of the potential for boidiesel as a transport fuel. ETSU-R-71 publication, HMSO, London. Diesel, R. 1895. German patent no.82168. Dodd, A. N., N. Salathia, A. Hall, E. Ke´vei, Re´ka To´th, F. Nagy, J. M. Hibberd, A. J. Millar, and A. A. R. Webb. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630-633. Dorado, M. P., E. Ballesteros, F. J. Lopez, and M. Mittelbach. 2004. Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energ. Fuel. 18:77-83 Drown, D. C., K. Harper, and E. Frame. 2001. Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc. 78(6):579-584. Eastmond, P., L. Kolacna, and S. Rawsthorne. 1996. Photosynthesis by Developing embryos of oilseed rape (Brassica napus L.). J. Exp. Bot. 47(304):1763-1769. Galema, S. A. 1997. The micheal reaction under microwave irradiation. Chem. Soc. Rev. 26:233-238. Guo, H., H. Yang, T. C. Mockler, and C. Lin. 1998. Regulation of flowering time by Arabidopsis photoreceptors . Science 279 : 1360- 1363. Gunstone, F. D. 2004. Rapeseed and canola oil - production, processing, properties and uses. 1st ed. UK. Blackwell. Han, J., W. Luhs, K. Sonntag, U. Zahringer, D. S. Borchardt, F. P. Wolter, E. Heinz, and M. Frentzen. 2001. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L.. Plant Mol. Biol. 46:229-239. Hernando, J. ,P. Leton, M. P. Matia, J. L. Novella, and J. Alvarez-Builla. 2007. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 86 : 1641-1644. Ho, W. H., and S. J. Hsieh. 2001. Solid microextraction associated with microwave assisted extraction of organochlorine pesricides in medicinal plants. Anal. Chim. Acta 428:111-120. Kardailsky, I., V. K. Shukla, J. H. Ahn, N. Dagenais, S. K. Christensen, J. T. Nguyen, J. Chory, M. J. Harrison, and D. Weigel. 1999. Activation tagging of the floral inducer FT. Science 286 : 1962-1965. Katavic, V., E. Mietkiewska, D. L. Barton, E. M. Giblin, D. W. Reed, and D. C. Taylor. 2002. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur. J. Biochem. 269 : 5625-5631. Katavic, V., W. Friesen, D. L. Batton, K. K. Gossen, M. Giblin, T. Luciw, J. An, J. Zou, S. L. MacKenzie, W. A.Keller, D. Males, and D. C. Taylor. 2001. Improving erucic acid content in rapeseed through biotechnology : What can the Arabidopsis FAE1 and the yeast SLC1-1 genes contribute? Crop Sci. 41: 739-747. Kanrar, S., J. Venkateswari, P. Dureja, P. B. Kirti, and V. L. Chopra. 2006. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down- regulation of the Brassica juncea FATTY ACID ELONGATION1 (BjFAE1) gene. Plant Cell Rep. 25: 148–155. King, S. P., M. R. Bardger, and R. T. Furbank. 1998. CO2 refixation characteristics of developing canola seeds and silique wall. Aust. J. Plant Physiol. 25:377-386. Kingston, H. M., and L. B. Jassie. 1986. Application of microwave digestion in analytical chemistry. J. Anal. Chem. 58:25-34. Klejnot, J., and C. Lin. 2004. A CONSTANS experience brought to light. Science 303 : 965-967. Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi, and T. Arki. 1999. Apair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962. Kodali, S., A. Galgoci, K. Young, R. Painter, L. L. Silver, K. B. Herath, S. B. Singh, D. Cully, J. F. Barrett, D. Schmatz, and J. Wang. 2005. Determination of selectivity and efficacy of fatty acid synthesis inhibitors. J. Biol. Chem. 280(2):1669-1677. Kunst, L., D. C. Taylor, and E. W. Underhill. 1992. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol. Biochem. 30:425-434. Lassner, M. W., K. Lardizabal, and J. G. Metz. 1996. A Jojoba β-ketoacyl- CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281-292. Lee, S .C., J. H. Kim, S. M. Jeong, D. R. Kim, J. U. Ha, K. C. Nam, and D. U. Ahn. 2003. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 51:4400-4403. Loh, S. K., S. M. Chew ,and Y. M. Choo. 2006. Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J. Am. Oil Chem. Soc. 83:947-952. Lou, X., H. G. Jansseon, and C. A. Cramers. 1997. Parameters affecting the accelerated solvent extraction of polymeric samples. Anal. Chem. 69:1598-1603. Mahajan, S., S. K. Konar, and D. G. B. Boocock. 2006. Determining the acid number of biodiesel. J. Am. Oil Chem. Soc. 83:567-570. Markley, K. S. 1960. Fatty acids. 2nd ed. New York : Interscience publishers. pp.23-223. Mielke, T. 2002a. Oil World Annuls 2002 and 2003,ISTA Mieke GmbH, Hamburg. Mielke, T. 2002b. The revised oil world 2020:Supply, Demand, and Price, ISTA Mielke GmbH, Hamburg. Mittelbach, M., and P. Tritthard. 1988. Dieselfuel derived from vegetable oils.Ⅲ Emission tests using methyl esters of used frying oil. J. Am. Oil Chem. Soc. 65(7) : 1185-1187. Mittelbach, M., and H. Enzelsberger. 1999. Transesterification of heated rapeseed oil for extending diesel fuel. J. Am. Oil Chem. Soc. (76) 5 : 545-550. Mockler, T. C., H. Guo, H. Yang, H. Duong, and C. Lin. 1999. Anatagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126 : 2073-2082. Nam, K. C., J. H. Kim, D. U. Ahn, and S. C. Lee. 2004. Far-infrared radiation increases the antioxidant properties of rice hull extract in cooked turkey meat. J. Agric. Food Chem. 52:374-379. Ohlrogge, J. B., D. N. Kuhn, and P. K. Stumpf. 1979. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc. Natl. Acad. Sci. USA 76 : 1194-1198. Ohlrogge, J. B., and J. G. Jaworski. 1997. Regulation of fatty acid synthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 48 : 109-136. Okuley, J., J. Lightner, K. Felmann, N. Yadav, E. Lark, and J. Browse. 1994. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147-158. Olsson, G. 1960. Species crosse within the genus Brassica II. Artificial Brassica napus L. Hereditas 46:351–396. Puyaubert, J., W. Dieryck, P. Costaglioli, S. Chevalier, A. Breton, and R. Lessire. 2005. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development. Biochim. Biophys. Acta-Bioenerg.1687:152 -163. Ramya, T. N. C., N. Surolia, and A. Surilia. 2005. Is there an answer? IUBMB 57(4/5):371-373. Ruuska, S. A., J. Schwender, and J. B. Ohlrogge . 2004. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136:2700-2709. Riezman, H. 2007. The long and short of fatty acid synthesis.Cell 130:587-588. Salathia, N., J. R. Lynn, A. J. Millar, and G. J. King. 2007. Detection and resolution of genetic loci affexting circadian period in Brassica oleracea. Theor. Appl. Genet. 114:683-692. Saka S., and D. Kusdiana. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80 : 225-231. Schepens, I., P. Duek, and C. Fankhauser. 2004. Phytochrome-mediated light signaling in Arabidopsis. Curr. Opin. Plant Biol. 7 : 564-569. Suarez-Lopez, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde, and G. Coupland. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 : 1116-1120. Thies, W. 1970. Chloroplast development and biogenesis of linolenic acid in ripening cotyledons of rapessed.-In international conference on the science, technology and marketing of rapeseed and rapeseed product, St Adele, Quebec, Proceedings, pp.348-356. Rapeseed Assocation of Canada, Ottawa. Thomas B., and P. D. Vince. 1997. Photoperiodism in Plants, 2nd ed.UK. Academic Press. Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach, and G. Coupland. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303 : 1003-1006. Walker, B. L. 1976. Metabolic bases for cardiac fat deposition in young rats fed rapeseed oil. Research on rapeseed. seed, oil, meal and meal fractions. Rapeseed association of canada, publication No. 40:19-20. Wettstein-Knowles, P. V., Olsen J. G., J. A. McGuire, and A. Henriksen. 2006. Role of active site histidines and lysine in Cys-His-His-type β-ketoacyl-acyl carrier protein synthases. FEBS J. 273:695-710. Yoshida, H., N. Hirooka, and G. Kajumoto. 1990. Microwave energy effects on quality of some seed oils. J. Food Sci. 55(5):1412-1416. Yoshida, H., I. Kondo, and G. Kajumoto. 1992. Participation of free fatty acid in the oxidation of purified soybean oil during microwave heating. J. Food Sci. 69(11):1136-1140.
摘要: 本研究以鳳試1001油菜為主要材料,在光週期為Light / Dark= 12 L / 12 D下,以光強度為125 μ mole photons m-2 s-1處理48小時後,可達87 %之發芽率。而在光週期為Light / Dark = 6 L/ 18 D下,以光強度為125 μ mole photons m-2 s-1處理18小時後,可達82 %之發芽率。恆溫25 ℃下,以16 L /8 D的光週期處理之鳳試1001油菜植株將會開花。在系列的光週期實驗中,以10 L /14 D光週期處理100天下,植株的生物量最高。本研究證實,當外在環境之時間暗示週期(如光週期),若能符合鳳試1001油菜的內生韻律之概日週期(circadian period )約為24小時,顯示可增加其生長優勢。 以微波輔助萃取鳳試1001油菜種子脂肪酸,分析棕櫚酸、硬脂酸、油酸、亞麻油酸與次亞麻油酸之含量,當微波功率為300 W下處理30分鐘,有最高萃取量,較傳統方法有效益。此外,實驗中各種不同蕓苔屬植物種子中,以鳳試1001油菜種子用氣相層析儀測得的脂肪酸組成較適合作為生質柴油的利用。 遠紅外線奈米陶瓷粉體以FIR(Far- Infrared Radiation)Y之處理下,若為直接接觸的情況,可因添加量過高(≧5 %)而造成植株死亡。對油菜開花時間上的調節,若以低濃度(1 %)直接接觸的處理下添加FIR Y粉體,可顯著延後其開花時間達30天。在種子脂肪酸含量上,以間接接觸添加FIR Y粉體(5 %)之處理,其各脂肪酸含量皆顯著高於控制組2~3倍。 以Canola油菜油進行轉酯化反應的試驗中,以油醇莫耳數比為1:9的條件,並以反應時間為1小時且溫度設定為60 ℃及反應後靜置0小時之條件下,所產生的脂肪酸甲基酯總含量較高。利用微波來進行轉酯化反應,當設定功率為550 W處理10分鐘的條件下,測得之脂肪酸甲基酯的總含量最高為0.786 g mL-1 biodiesel,此方法在脂肪酸甲基酯的總產量與反應所需時間上,皆優於傳統轉酯化之方法。
Rapeseed (Brassica napus L.) of Fengshan Tropical Horticultural Experiment Branch (FTHEB) 1001 has been taken as the main experimental material in this study. In Light / Dark= 12 L / 12 D condition , germination rate of FTHEB 1001 seeds can reach 87 % when light intensity at 125 μ mole photos m-2 s-1 for 48 hours. Whereas in Light / Dark =6 L / 18 D condition , germination rate can reach already 82 % at 125 μ mole photos m-2 s-1 for 18 hours. In constant 25 ℃, FTHEB 1001 will bloom under the photoperiod of 16 L / 8 D. The highest biomass of FTHEB 1001 was obtained under 10 L/ 14 D cycles for 100 days in the series of photoperiod experiments. In this study , it confirms that FTHEB 1001 can enhance growth advantage when the environmental time cue cycle (e.g. photoperiod) closely matches to the circadian period ( ~ 24 h) of its endogenous rhythm. Fatty acids of FTHEB 1001 seeds have been analyzed and extracted by microwave-assisted extraction, among them, the content of palmitic acid、stearic acid、oleic acid、linoleic acid and linolenic acid can be obtained the best under power rate 300W for 30 min. This method is much better than traditional extraction. In addition , the composition of fatty acids analyzed by GC from FTHEB 1001 seeds is more suitable for biodiesel utilization among different Brassica spp. seeds taken for experiments. Far-Infrared-Radiation nano ceramic powder FIR Y at higher levels (≧5 %) might cause death of FTHEB 1001 when added to soil mixtures and contacted directly with plants. As for regulation of flowering time , FTHEB 1001 plants significantly delayed to bloom up to 30 days treated by FIR Y at lower concentration (1 %) when added directly.Under the treatment of FIR Y (5 % ) added indirectly to FTHEB 1001 plants , the content of seed fatty acids is obviously 2~3 fold higher than control. Canola oil has been used as source material for transesterification reaction. In the condition of oil / methanol molar ratio (= 1:9), at 60℃ for 1 h and then no further incubation time , the total contents of fatty acid methyl esters (FAMEs) can be generated more. The highest total content of FAMEs (0.786 g mL-1 biodiesel) analyzed by GC was obtained under 550 W for 10 min by microwave transesterification. For total amounts of FAMEs and reaction time, microwave transesterification has advantage over traditional transesterification method.
URI: http://hdl.handle.net/11455/36886
其他識別: U0005-1102200915440000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1102200915440000
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.