Please use this identifier to cite or link to this item:
標題: 巴拉刈抗性水稻突變體之抗氧化反應
Antioxidative response of paraquat resistant rice mutants
作者: 張育綺
Chang, Yu- Chi
關鍵字: paraquat
superoxide dismutase
ascorbate peroxidase
glutathione reductase
出版社: 農藝學系所
引用: 費雯綺、周桃美、陳美莉。2007。農藥名稱手冊。行政院農業委員會農業藥物毒物試驗所。 蔣永正。2003。永續農業之雜草管理。2003永續農業經營與管理訓練講義。 行政院農業委員會農業藥物毒物試驗所。2006。植物保護手冊。台中,台灣。行政院農業委員會農業藥物毒物試驗所。 行政院農業委員會。2007。96年農業統計年報。 謝芳庭、郭孟祥。1998。活性氧在植物病害防禦上所扮演的角色。科學農業 46:338-346。 Abdel-kader. Z. D. and A. A. H. Saleh. 2002. Role of the ascorbate-glutathione cycle during senescence and programmed cell death in Phaseolus cutyledons. Egyptian J. Biol. 4:7-13. Ananieva, E. A., K. N. Christov, and L. P. Popova. 2004. Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. L. Plant Physiol. 161:319-328. Apel, k. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. Arafat, L. 2005. Chilling injury in mangoes. Ph. D. Thesis. Wageningen University. Asada. K. 1999. The water- water cycle in chloroplast: scavenging of accive oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639. Ball, M. C., J. A. Butterworth, J. S. Roden, R. Christian, and J. J. G. Egerton. 1994. Application of chlorophyll fluorescence to forest ecology. Australican Jour. Plant Physiol. 22:311-319. Bergman, L. and W. Rennenberg. 1993. Glutathione metabolism in plants. In”Sulfurnutrition and assimilation in higher plants”, ed. L. J. De Kok, pp.109-123. The Huhue, The Netherlands:SPB Academic Publishing bv. Bhattacharjee, S. and A. K. Mukherjee. 2004. Heavy metal induced germination and early growth impairment in Amaranthus lividus L.: Implications of oxidative membrane damage. J. Plant Biol. 31:1-11. Bielawsk, W. and K. W. Jiy. 1986. Reduced and oxidized glutathione and glutathione-reductase activity in tissues of Pisum sativum. Planta 169:267-272. Cadwnas, E,1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58:79-110. Chiang, Y. J., Y. X. Wu, M. Y. Chiang, and C. Y. Wang. 2008. Weed Sci. 56:350-355. Crawford, R. M. M. and B. Wollenweber-Ratzer. 1992. Influence of L-ascorbic acid on post-anoxic growth and survival of chickpea seedlings(Cicer arietinum L.). J. Exp. Bot. 43:703-708. DeEll, J. R., O. V. Kooten, R.K. Prange, and D. P. MURR. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology. Hortic. Rev. 23:69-107. Dodge, A. D. 1989. Herbicides interacting with photosystem I. In:Dodge, A. D. (ed.) Herbicides and Plant Metabolism Cambridge University Press, Cambridge. Pp.37-50. Edwards, E. A., S. Rawsthorne, and P. M. Mullineaux. 1990. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284. Elstner, E. F. 1982.Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33:73-96. Elmelci, Y. and S. Terzioglu. 2005. Effects on wild and cultivated wheats. Pestic. Biochem. Physiol. 83:69-81. Eshdat, Y., D. Holland, Z. Faltin, and G. Benhayyim. 1997. Plant glutathione peroxidases. Physiol. Plant. 100:234-240. Frankel, E. N. 1991. Recent advances in lipid oxidation. J. Sci. Food Agric. 54: 495-511. Fridovich, I. 1978. The biology of oxygen radicals. Science. 201:875-880. Foster, J. G. and J. L. Hess. 1980. Responses of superoxide dismutase and glutathione reductase activites in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487. Foyer, C. H., P. Descourviéres, and K. J. Kunert. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523. Foyer, C. H., H. Lopez-Delgado, J. F. Dat, and I. M. Scott. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100:241-254. Foyer, C. H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133:21–25. Fuerst, E. P. and K. C. Vaughn. 1990. Mechanisms of paraquat resistance. Weed Technol. 4:150-156. Fuerst, E. P., H. Y. Nakatani, A. D. Dodge, D. Penner, and C. J. Arntzen. 1985. Paraquat resistance in Conyza. Plant Physiol. 77:984-989. Gechev, T., I. Gadjev, F. V. Breusegem, D. Inze, S. Dukiandjiev, V. Tonev, and I. Minkov. 2002. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol. Life Sci. 59:708-714. Giannopolitis, C. N. and S. K. Ries. 1977. Superoxide dismutase: I. Occurrence in higher plant. Plant Physiol. 59:309-314. Grisham, M. B. 1992. Reactive metabolites of oxygen and nitrogen. R. G. Landes Comp., Austin. Gutteridge, J. M. C. and Hlliwell, B. 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends Bio. Sic. 15:129-135. Guo, Z., M. Huang, S. Lu, Z. Yaqing, and Q. Zhong. 2007. Differential respone to paraquat induced oxidative stress in two vice cultivars on antioxidants and chlorophyll a fluorescence. Acta Physiol. Plant 29:39-46. Halliwell, B. 1987. Oxidative damage, lipidperoxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids. 44:327-340. Halliwwll, B. And J. M. C. Gutteridge. 1999. Free radicals in biodogy and medicine. Oxford University Press. U. K. Hart, J. J. and J. M. Tomaso. 1994. Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed Sci. 42:277-284. Huang, C., W. He, J. Guo, X. Chang, P. Su, and L. Zhang. 2005. Increased sensitivity to salt stress in an ascorbate- deficient Arabidopsis mutant. J. Exp. Bot. 56:3041-3049. Hung, K. T., C. J. Chang, C. H. Kao. 2002. Paraquat toxicity is reduced by nitric oxide in rice leaves. J. P lant Physiol. 159:159-166. Jialal, I., G. L. Vega, and S. M. Grundy. 1990. Physiologic levels of ascorbate inhibit the oxdative modification of low density lipoprotein. Atherosclerosis 82:185-191. Jime´nez, A., J. A. Hernandez, L. A. DelRio, and F. Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284. Jimenez. A., J. A. Hernandez, G. Pastori, L. A. D. Rio, and F. Sevilla. 1998. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118:1327-1335. Kanematsu, S. and K. Asada. 1989. CuZn-superoxide dismutases in rice: occurrence of an active, monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues. Plant Cell Physiol. 30:381-391. Kooten, O. V. and J. F. H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Physiol. Res. 25:147-150. Kuk, Y. I., J. S. Shin, H. I. Jung, J. O. Guh, S. Jung, and N. R. Burgos. 2006. Mechanism of paraquat tolerance in cucumber leaves of various ages. Weed Sci. 54:6-15. Lascano, H. R., L. D. Gómez, L. M. Casano, and V. S. Trippi. 1998. Changes in gluthatione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiol. Biochem. 36:321-329. Lascano, H. R., M. N. Melchiore, C. M. Luna, and V. S. Trippi. 2003. Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Sci. 164:841-848. Law, M. Y., S. A. Charles, and B. Halliwell. 1983. Glutathione and ascorbic acid spinach (Spinacin oleracea) chloroplasts: the effect of hydrogen peroxide and of paraquat. Biochem. J. 210:899-903. Lichtenthaler, H. L., F. Babani, and G. Langsdorf. 2007. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235-244. Liu, Z. J., X. L. Zhang, J. G. Bai, P. L. Zu, and L. Wung. 2009. Exogenou paraquat changes antioxidant enzyme activities and lipid peroxidation in drought- stressed cucumber leaves. Sci. Hort. 21:128-142. Maxwell. K. and G. N. Johnson. 2000. Chlorophyll fluorescence- a practical guide. Jour. Exp. Bot. 51:659-668. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence- a practical guide. J. Exp. Bot. 51:659-668. McCord, J. M. and I. Fridovch. 1969. Superoxide dismutase:An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049-6055. Meister, A. 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 263:17205–17208. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. Michaelis, L. and E. S. Hill. 1933. The viologen indicators. J. Gen. Physiol. 16:859-873. Murgia, I., D. Tarantino, C. Vannini, M. Bracale, S. Carravier, and C. Soave. 2004. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show tncreased resistance to paraquat- induced photooxidative stress and to nitric oxide- induced cell death. Planr J. 38:940-953. Nakano, Y. and K. Asada. 1980. Spinach chloroplasts scavenge hydron perodide on illumination. Plant Cell Physiol 21:1295–1307. Nakano, Y. and K. Asad. 1981. Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinachnchloroplasts. Plant Cell Physiol. 22:867-880. Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione:keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249-279. Norman, M. A. and E. P. Fuerst. 1997. Interactions of cations with paraquat in leaf sections of resistant and sensitive biotypes of Conyza bonariensis. Pestic. Biochem. Physiol. 57:181-191. Pastori, G., C. H. Foyer, and P. Mullineaux. 2000. Low temperature induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. J. Exp. Bot. 51:107–113. Palatnik, J. F., E. M. Valle, and N. Carrillo. 1997. Oxidative stress causces ferredoxin- NADP+ reductase from the thylakoid membranes in methyl viologen- treated plants. Plant Physiol. 115:1721-1727. Pyon, J. Y., R. Z. Piao, S. W. Roh, S.Y. Shin, and S. S. Kwak. 2004. Differential levels of antioxidants in paraquat- resistant and susceptible Erigeron cnadensis biotypes in Korea. Weed Biol. Manag. 4:75-80. Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 114: 695-704. Porter, N. A., S. E. Caldwell. and K. A. Mills. 1995. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30: 277-290. Polle, A. 2001. Dissecting the superoxide dismutase- ascorbate- glutathione- pathway in chloroplasts by metabolic modeling. Compu simulations as a step towards flux analysis. Plant Physiol 126: 445-462. Salin, M. L. 1988. Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant. 72:681-689. Satre, J., F. V. Pallardo, R. Dla, A. Pellin, G. Juan, J. E. O’Connor, J. M. Estrela, J. Miquel, and J. Vina. 1996. Aging of the liver age-associated mitochondrial damage in intact hepatocytes. Hepatology 24:1199-1205. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7-12. Schmitz-Eiberger, M. and G. Noga. 2001. Reduction of paraquat-induced oxidative stress in Phaseolus vulgaris and Malus domestica leaves by α-tocopherol. Sci. Hortic. 91:153-176. Schreiber, U. 2004. Pulse- amplitude- modulation (PAM) fluorometry and saturation pulse method: an overview. P. 279-319. In: G. C. Papageorgiou and Govindjee (eds.) Chlorophyll a fluorescence: a signayure of photosynthesis. Springer, Netherlands. Smirnoff, N. 1993. The role of active oxygen in the response of plant to water deficit and desiccation. New Phytol 125:27-58 Smith, I. K. 1985. Stimulation of glutathione synthesis in photorespiring plant by catalase inhibitors. Plant Physiol. 79:1044- 1047. Suntres, Z. E. 2002. Role of antioxidants in paraquat toxicity. Toxicology 180:65-77. Szigeti, Z. and E. Lehoczki. 2003. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag. Sci. 59:451-458. Thomposon, J. E., R. L. Ledge, and R. F. Barber. 1987. The role of free radicals in senescence and wounding. New Phytol. 105:317-344. Vaughn, K. C. and S. O. Duke. 1983. In situ localization of the sites of paraquat action. Plant Cell Environ 6:13-20. Vartak, v. and S. Bhargava. 1999. Photosynthetic performance and antioxidant metabolism in a paraquat- resistant mutant of Chlamydomonas reinhardtii L. Pestic. Biochem. Physiol. 64:9-15. Van Breusegem, F., M. Van Montagu. and D. Inze.1998. Engineering stress tolerance in maize. Outlook on Agriculture 27:115-124. VanToai, T. T. and C. S. Bolles. 1991. Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiol. 97:588-592. Wang, C. Y. and T. M. Chu. 2002. Physiological studies on crop responses and differential tolerance to excess ultraviolet-B. Chinese Agron. J. 12:149-160. Xu, Q., X. Xu, Y. Zhao, K. Jiao, S. J. Herbert, and L. Hao. 2008. Salicylic acid, hydrogen peroxide and calcium- induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedings. Plant Growth Regul. 54:249-259 Ye, B. and J. Gressel. 2000. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211:50-61. Young, I. S. and Woodside, J. V. 2001. Antioxidants in health and disease. J. Clin. Pathol 54:176-186. Yu, Q., A. Cairns, and S. B. Powles. 2004. Paraqiat resistance in a population of Lolium rigidum. Func. Plant Biol. 31:247-254.
摘要: 本試驗探討由台農67號(TNG 67)經疊氮化鈉所誘導的巴拉刈抗性突變體其抗性生理機制中抗氧化系統所扮演之角色。藉由光系統Ⅱ光化學最大效能值作為判斷標準,顯示在100 μM巴拉刈處理後抗性與感性水稻植株其抗性具有顯著差異。測定植物體脂質過氧化傷害產物丙二醛(malondialdehyde, MDA)作為植物體氧化傷害之指標,結果指出以100 μM巴拉刈處理9小時後,抗性植株之MDA累積量僅增加40%,而感性植株則增加為130%,顯示抗性植株對於巴拉刈所造成之氧化逆境有較佳抗性。進一步測定植株內抗氧化相關酵素,如超氧歧化酶(superoxide dismutase, SOD)、抗壞血酸過氧化酶(ascorbate peroxidase, APX)與穀胱苷肽還原酶(glutathione reductase, GR)活性的結果顯示,以100 μM巴拉刈處理3小時,感性植株其SOD活性逐漸下降,之後並維持在較低的活性,因此可能造成植株內超氧陰離子的累積,提高植物體內的氧化逆境。此外,在巴拉刈處理後抗性植株APX活性有上升的趨勢;感性植株則沒有顯著增加,並且在整個試驗過程中,感性植株其抗壞血酸鹽(ascorbate)均維持在較低的含量。 在巴拉刈處理後抗性植株其GR活性快速而顯著增加,且感性植株大幅下降,此一結果顯示活化的reduced glutathione/oxidized glutathione (GSH/GSSG) cycle在水稻巴拉刈抗性突變體中具有關鍵角色。此種現象也存在於野茼蒿抗性生物型(Chiang et al. 2008)。本研究進一步藉由外施抗壞血酸試驗探討GR活性對於增強水稻抗巴拉刈的貢獻。
In order to explore the physiological mechanism of paraquat resistance of rice mutant, a sodium azide-mutated rice of cv. Tainung 67 (TNG 67) in Taiwan, whose resistance to this herbicide has been identified, and the role of antioxidative system was assessed. The susceptible (S) and resistant (R) mutants of rice were distinguished clearly by the maximal efficiency of photosystem II photochemistry (Fv/Fm) caused by 100 μM paraquat. While a 40% increment of malondialdehyde, an indicator for peroxidation damage to plant, in R-mutant was observed, that in S-mutant increased significantly by 130% at 9 hours after treatment (HAT) of 100 μM paraquat. Analysis of several antioxidants and pertinent enzymes revealed that superoxide dismutase (SOD) activity was decreased by paraquat 3 HAT in S-mutant and maintained at low activity afterward, which might cause more superoxide anion radicals accumulation. Besides, ascorbate peroxidase (APX) activity obviously increased after paraquat treatment in R-mutant, whereas none of increment in S-mutant; and a significantly low level of ascorbate existed throughout the experiment in S-biotype. Although the higher ratio of reduced glutathione to toal glutathione in R-mutant as compared with S-mutant was found till 9 HAT, coupled with a pronounced and fast increase of glutathione reductase (GR) activity in R-mutant, as well as the large decline of that in S-mutant, suggests that an active reduced glutathione/oxidized glutathione (GSH/GSSG) cycle is critical to paraquat resistance of rice mutant. This phenomenon has also been reported in tall fleabane (Chiang et al. 2008). The decisive contribution of a functional GSH/GSSG cycle to paraquat resistance through an enhancement of GR activity in this rice mutant was further confirmed by an experiment of exogenous application of ascorbate.
其他識別: U0005-0607200916172200
Appears in Collections:農藝學系



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.