Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3701
標題: 奈米碳管擔持銅/氧化鈰觸媒之製備及其催化甲醇蒸汽重組反應之研究
Preparation of Cu/CeO2 Catalysts Supported on Carbon nanotubes for Steam Reforming of Methanol
作者: 陳志維
Chen, Zhi-Wei
關鍵字: carbon nanotubes
奈米碳管
steam reforming of methanol
cerium oxide
precipitation and reduction method
nanocatalyst
hydrogen
甲醇蒸汽重組反應
氧化鈰
沉澱與還原法
奈米觸媒
氫氣
出版社: 化學工程學系所
引用: [1] 黃鎮江, "燃料電池", 全華科技圖書股份有限公司出版, 2005 [2] A. Oberlin, M. Endo, T. Koyama, " High resolution electron microscope observations of graphitized carbon fibers", Carbon 14 (1976) 133-135 [3] S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56-58 [4] S. Iijima, T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", Nature 363 (1993) 603-605 [5] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature 363 (1993) 605-607 [6] 成會民, "奈米碳管",五南圖書股份有限公司出版,1994 [7] E. T. Thostensona, Z. Renb, T. W. Choua, "Advances in the science and technology of carbon nanotubes and their composites: a review", Composites Science and Technology 61 (2001) 1899-1912 [8] Z. Liu, J. Ma, Y. H. Cui, "Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions", Carbon 46 (2008) 890–897 [9] B. Pawelec, V. La Parola, R.M. Navarro, S. Murcia-Mascaro’ s, J.L.G. Fierro, "On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics", Carbon 44 (2006) 84-98 [10] X. Li, I.M. Hsing, " The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes", Electrochimica Acta 51 (2006) 5250-5258 [11] D. Zhang, L. Shi , H. Fu , J. Fang, "Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites", Carbon 44 (2006) 2849-2867 [12] Y. Liang, H. Zhang, B. Yi, Z. Zhang , Z. Tan, "Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells", Carbon 43 (2005) 3144–3152 [13] Y. Liu , J. Tang, X. Chen, R. Wang ,G.K.H. Pang, Y. Zhanga, J.H. Xin , "Carbon nanotube seeded sol–gel synthesis of silica nanoparticle assemblies ", Carbon 44 (2006) 158-193 [14] M. Wang, K.D. Woo, D.K. Kim, "Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method", Energy Conversion and Management 47 (2006) 3235-3240 [15] A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy, "Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites", Carbon 42 (2004) 1147-1151 [16] G. Wu, B.Q. Xu, "Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes", Journal of Power Sources 174 (2007) 148-158 [17] D.J. Guo, L. Zhaoa, X.P. Qiu, L.Q. Chena, W.T. Zhua, "Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation", Journal of Power Sources 177 (2008) 334-338 [18] Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, "Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation", Materials Chemistry and Physics 85 (2004) 396–401 [19] K.I. Hana, J.S. Leea, S.O. Parka, S.W. Leeb, Y.W. Parkb, H. Kima, "Studies on the anode catalysts of carbon nanotube for DMFC", Electrochimica Acta 50 (2004) 791-794 [20] J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, "A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC", Electrochimica Acta 52 (2007) 2649-2656 [21] N. Jhaa, A.L.M. Reddya, M.M. Shaijumona, N. Rajalakshmib, S. Ramaprabhua, "Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell", International Journal of Hydrogen Energy 33 (2008) 427-433 [22] K.T. Jeng, C.C. Chien, N.Y Hsu, W.M Huang, S.D. Chiou, S.H. Lin "Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst", Journal of Power Sources 164 (2007) 33-41 [23] Y.H. Liu, B. Yi, Z.G. Shao, L. Wang, D. Xing, H. Zhang, "Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications", Journal of Power Sources 163 (2007) 807-813 [24] N. Rajalakshmi, H. Ryub, M.M. Shaijumona, S. Ramaprabhua, "Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material", Journal of Power Sources 140 (2005) 250-257 [25] M. Gangeri, S. Perathoner, G. Centi, "Synthesis and performances of carbon-supported noble metal nanoclusters as electrodes for polymer electrolyte membrane fuel cells", Inorganica Chimica Acta 359 (2006) 4828-4832 [26] X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, " Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell", Journal of Power Sources 158 (2006) 154-159 [27] L. Li, G. Wu, B.Q. Xu, "Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids", Carbon 44 (2006) 2973-2983 [28] Q. C. Xu, J. D. Lin, J. Li, X. Z. Fu, Z. W. Yang, W. M. Guo, D. W. Liao, "Combination and interaction of ammonia synthesis ruthenium catalysts", Journal of Molecular Catalysis A: Chemical 259 (2006) 218-222 [29] G.W. Yang, G.Y. Gao, C. Wang, C.L. Xu, H.L. Li, "Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation", Carbon 46 (2008) 747-752 [30] B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, "Carbon nanotubes synergistically enhance photocatalytic activity of TiO2", Catalysis Communications 9 (2008) 1410-1413 [31] L. Jiang, L. Gao, "Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity", Materials Chemistry and Physics 91 (2005) 313-316 [32] Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, "Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye", Applied Catalysis B: Environmental 61 (2005) 1–11 [33] H.M. Yang, P.H. Liao, "Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol" Applied Catalysis A: General 317 (2007) 226 [34] P.H. Liao, H.M. Yang, "Preparation of catalyst Ni-Cu/CNTs by chemical reduction with formaldehyde for steam reforming of methanol", Catalysis letter 121 (2008) 274-282 [35] L. Ma, B. Gongb, T. Trana, M.S. Wainwright, "Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift", Catalysis Today 63 (2000) 499-505 [36] B. Lindstrom, L.J. Pettersson, "Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications", International Journal of Hydrogen Energy 26 (2001) 923-933 [37] J.P. Shen, C. Song, "Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells", Catalysis Today 77 (2002) 89-98 [38] J. Papavasiliou, G. Avgouropoulos , T. Ioannides, "Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts", Catalysis Communications 5 (2004) 231-235 [39] Y. Matsumura, T. Nakamori, "Steam reforming of methane over nickel catalysts at low reaction temperature", Applied Catalysis A: General 258 (2004) 107-114 [40] S. Rakass, H.O. Hassani, P. Rowntree, N. Abatzoglou, "Steam reforming of methane over unsupported nickel catalysts", Journal of Power Sources 158 (2006) 485-496 [41] T.J. Huang, S.Y. Jhao, "Ni-Cu/samaria-doped ceria catalysts for steam reforming of methane in the presence of carbon dioxide ", Applied Catalysis A: General 302 (2006) 325-332 [42] S. Liu, K.Takahashi, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading", Catalysis Today 87 (2003) 247-253 [43] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component", Applied Catalysis A: General 277 (2004) 265-270 [44] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO", Applied Catalysis A: General 283 (2005) 125-135 [45] S. Liu, K. Takahashi, K. Fuchigami, K. Uematsu, "Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation", Applied Catalysis A: General 299 (2006) 58-65 [46] 孫逸民,趙敏勳,陳玉舜,謝明學,劉興鑑, "儀器分析",全威圖書有 限公司,1997 [47] B. D. Cullity and S. R. Stock, "Elements of x-ray diffraction 3th Ed",2001 [48] Bond, "非均勻系催化原理與應用",復文圖書有限公司,1992 [49] 呂宗昕, "奈米科技與光觸媒",商周出版,2003 [50] H.I. Chen, W.T. Huang, Y.Y. Lin, "Preparation of Ultra-Fine Cerium Dioxide Powder", Journal of Materials Science and Engineering, 34 (2002) 179-184 [51] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, "Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming", Applied Catalysis B: Environmental 69 (2007) 226-234
摘要: 本論文之研究目的為將活性金屬銅與促進劑氧化鈰擔持於奈米碳管表面,將其應用於甲醇蒸汽重組反應。觸媒製備的變數包括不同的製備方法、不同載體、不同活性金屬與促進劑之重量比、不同活性金屬與促進劑總擔持量、不同第二促進劑添加、主要促進劑氧化鈰與第二促進劑氧化鋅不同重量比、不同第二活性金屬的添加等。甲醇蒸汽重組反應變因包含有不同水量對甲醇莫耳數比、不同重量空間流速與觸媒穩定性測試。 實驗結果顯示,利用沉澱與還原法製備之觸媒反應活性較高。使用管徑40~60 nm的奈米碳管其氫氣產率最高。添加促進劑氧化鈰與活性金屬銅重量比為1:1時,氫氣產率與二氧化碳選擇率都較高。活性金屬與促進劑總擔持量為50 %時,反應溫度在320 ℃,有很高的反應活性。添加少量氧化鋅為第二促進劑時,氫氣產率在280 ℃,即達到接近100 %,而添加第二活性金屬鉑、鐵與鈀則會抑制反應活性。 在甲醇蒸汽重組反應變因中,當水與甲醇莫耳數比為1.3 mol/mol與反應溫度為280 ℃時,氫氣產率為98 %,其單位觸媒產氫速率可達117.05 mmol/s*kg.cat。在100小時之活性穩定測試過程中,反應時間超過34小時後,其單位觸媒產氫速率即保持在84 mmol/s*kg.cat。 本研究成功利用沉澱與還原法將促進劑氧化鈰與活性金屬銅擔持於奈米碳管上,應用於甲醇蒸汽重組反應中有相當好的效果。
In the thesis, the purpose of this study is to prepare nanocatalyst Cu/CeO2 supported on carbon nanotubes (CNTs) and to apply it on steam reforming of methanol. The parameters catalyst preparation include the different Cu/CeO2 deposition method, types of support of catalyst, weight ratio of Cu/ CeO2, Cu/ CeO2 content, different second promoters, weight ratio of CeO2/ZnO and additions of different metals . Operating conditions in steam reforming of methanol are molar ratio of H2O/CH3OH, weight hourly space velocity, and stability of catalysts. The results show that the catalyst prepared by precipitation and reduction method has a higher activity than co-precipitation method. The highest hydrogen yield with carbon nanotubes(40~60 nm) as support for catalysts was obtained. A high hydrogen yield and selectivity of CO2 were achieved at weight ratio of Cu to CeO2 being 1:1. The catalyst with 50 wt% Cu/ CeO2/CNTs showed high activities at 320 ℃, and by adding ZnO as second promoter to Cu/ CeO2/CNTs catalyst, the hydrogen yield was obtained near 100 % at 280 ℃. The addition of second active metal (Pt、Fe and Pd) reduces the catalytic activity. In methanol steam reforming with 1.3 of molar ratio of water to methanol, the hydrogen yield was 98 % and hydrogen production rate was 117.05 mmol/s*kg.cat at 280 ℃. In 100-hour duration of test, after 34 hr, the hydrogen production rate kept at 84 mmol/s*kg.cat. In this study, we successfully prepared Cu/ CeO2 catalyst supported on carbon nanotubes with precipitation and reduction method, and applied it in steam reforming of methanol efficiently.
URI: http://hdl.handle.net/11455/3701
其他識別: U0005-2406200816142200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406200816142200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.