Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3705
標題: 聚丙烯/改質蒙脫土奈米複材製備與物性
Preparation and Physical Properties of Polypropylene/Modified Montmorillonite Nanocomposites
作者: 陳均偉
Chen, Chun-Wei
關鍵字: Clay
黏土
Polypropylene
nanocomposite
Dynamic Mechanical Analysis
聚丙烯
奈米複材
動態機械分析
出版社: 化學工程學系所
引用: 1.吳泉源, “科學人-奈米特刊”, 遠流出版社, 台北, 第10頁 (2007) 2.張立德, “奈米材料”, 五南書局, 台北, 第30頁 (2002) 3.Okada, A.; Kawasumi, M., Polym. Prepr., 28, 447 (1987) 4.白春禮, “奈米科技現在與未來”, 凡異出版社, 台北, 第49頁 (2002) 5.Akelah, A.; Moet, A., Journal of Applied Polymer Science:Applied Polymer Symposium, 55, 153 (1994) 6.Peng, F.; Lu, L.; Sun, H.; Wang, Y.; Liu, J.; Jiang, Z., Chemistry of Materials, 17, 6790 (2005) 7.Jung, M. H.; Chang, J. H.; Kim, J. C., Polymer Engineering and Science, 47, 1820 (2007) 8.彭耀寰, “高分子材料“, 大中國圖書公司, 台北, 第36頁 (1993) 9.Sadok, L.; Eduardo, R. H., Chem. Commun., 24, 2996 (2003) 10.Wei, L.; Tang, T.; Hung, B., Journal of Polymer Science : Part A:Polym. Chem., 42, 941 (2004) 11.Bi, W.; Song, R.; Meng, X.; Jiang, Z. ; Li, S.; Tang, T., Nanotechnology, 18, 115620 (2007) 12.Kato, M.; Usuki, A.; Okada, A., Journal of Applied Polymer Science, 66, 1781 (1997) 13.Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A., Macromolecules, 30, 6333 (1997) 14.Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A., Journal of Applied Polymer Science, 67, 87 (1998) 15.Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A., Journal of Applied Polymer Science, 78, 1918 (2000) 16.Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Kato, M.; Tsukigase, A.; Usuki, A., Macromol. Mater. Eng., 280, 76 (2000) 17.Ma, J.; Qi, Z.; Hu, Y., Journal of Applied Polymer Science, 82, 3611 (2001) 18.Liu, X.; Wu, Q., Polymer, 42, 10013 (2001) 19.Ellis, T.; Dangelo, S., Journal of Applied Polymer Science, 90, 1639 (2003) 20.Ton-That, M. T.; Perrin-Sarazin, F.; Cole, K. C.; Bureau, M. N.; Denault, J., Polymer Engineering Science, 44, 1212 (2004) 21.Gu, S. Y.; Ren, J.; Wang, Q. F., Journal of Applied Polymer Science, 91, 2427 (2004) 22.王建智、王曄, “聚丙烯有機黏土奈米複材之結構及物性”, 台灣高分子聯合會議, F-P-II-010 (2005) 23.Wu, J. Y.; Wu, T. M.; Chen, W. Y. ; Tsai, S. J.; Kuo, W. F.; Chang, G. Y., Journal of Polymer Science: Part B:Polymer Physics, 43, 3242 (2005) 24.Mirzazadeh, H.; Katbab, A. A., Polymer for Advance Technologies, 17, 975–980 (2005) 25.López-Quintanilla, M. L.; Sa’nchez-Valde’s, S.; Ramos de, L. F.; Medellĭn -Rodrĭguez, F. J., Journal of Applied Polymer Science, 100, 4748 (2006) 26.吳愷之、王曄, “改質聚丙烯與有機黏土奈米複材之混煉研究”, 台灣高分子聯合會議, C067 (2006) 27.Hu, Y.; Tang, Y.; Song, L., Polymer for Advance Technologies, 17, 235 (2006) 28.Moncada, E. ; Quijada, R. ; Lieberxirth, I.; Mehrdad, Y. P., Macromol. Chem. Phys., 207, 1376 (2006) 29.Ratnayake, U. N. ; Haworth, B., Polymer Engineering and Science, 10, 1008 (2006) 30.羅次郎、黃博辰、張主良、廖文城, “聚丙烯/蒙脫土奈米複合材料”, 台灣高分子聯合會議F0-4-1 (2007) 31.Zhao, J.; Cui, Y.; Li, B. H., China Plastics Indusitry, 35, 277 (2007) 32.Avrami, M. J.; Chem. Phys., 9, 177 (1941) 33.Ozawa, T.; Polymer, 12, 150 (1971) 34.Xu, W.; Ge, M.; He, P., Journal of Polymer Science : Part B : Polymer Physics, 40, 408 (2002) 35.Li, J.; Chixing, Z.; Wang, G., Polymer Testing, 22, 217 (2003) 36.Xu, W.; Liang, G.; Wang, W.; Tang, S.; He, P.; Pan, W., Journal of Applied Polymer Science, 88, 3093 (2003) 37.Qian, J.; He, P.; Nie, K., Journal of Applied Polymer Science, 91, 1013 (2004) 38.Zheng, W.; Lu, X.; Toh, C. L.; Zheng, T.H.; He, C., Journal of Polymer Science : Part B : 42, 1810 (2004) 39.Song, J.; Wang, B. H.; Wang, L., Journal of Daqing Petroleum Institute, 29, 54 (2005) 40.Ni, Z.; Sun, Z. M.; Gong, Y. H.; Song, J.; Zhou, E. G., Polymer Materials Science and Engineering, 22, 79 (2006) 41.Medellín-Rodríguez, F. J.; Mata-Padilla, J. M.; Hsiao, B. S.; Waldo-Mendoza, M. A.; Ramírez-Vargas, E.; Sánchez-Valdes, S., Polymer Engineering and Science, 1890 (2007) 42.Prakashan, K.; Gupta, A. K.; Maiti, S. N., Journal of Applied Polymer Science, 108, 1298 (2008) 43.Branker, C. J.; Prakash, S. S., US Patent 5, 948, 482 (1995) 44.Johnsen, B. B.; Olafsen, K.; Stori, A., International Journal of Adhesion & Adhesives, 23, 155 (2003) 45.葉佳炘, “聚對苯二甲酸/二氧化矽奈米複合材料之製備與物性分析”, 國立中興大學化學工程研究所碩士論文 (2005) 46.陳維彥, “聚丙烯-蒙脫土奈米複合材料製備與物性探討”, 國立中興大學化學工程研究所碩士論文 (2004) 47.Maurizio, A.; Simona, C.; Gaetano, D. V.; Maria, E. E., Advances in Polymer Technology, 24, 132 (2005) 48.Osman, M. A.; Mittal, A., Macromol. Chem. Phys., 208, 68 (2007) 49.Mittal, V., Journal of Applied Polymer Science, 107, 1350 (2008)
摘要: 本研究首先合成改質矽烷GT後,將其與蒙脫土經由離子交換吸附在蒙脫土表面上,並添加酸化後之Tetraethyl Orthosilicate ( TEOS ) 在水相中與GT進行水解縮合反應,於蒙脫土表面生成二氧化矽奈米粒子 ( Clay-Silica,CS ),之後添加GPS於CS中進行接枝反應,讓二氧化矽粒子表面帶有環氧基團,製備出改質蒙脫土 ( Clay-Silica-GPS, CSG ),經由SEM觀察改質蒙脫土表面形態後可發現,蒙脫土表面生成之二氧化矽粒子分佈均勻,粒徑大小約為12~16 nm,且可觀察到粒子外形呈現不規則狀。而IR分析亦可發現改質蒙脫土在GPS接枝後,出現環氧基 ( 917cm -1 ) 的吸收訊號,代表GPS接枝成功,且透過TGA的分析可以成功計算出接枝量為1.10 mmole-GPS/g-無機物。由X光分析可發現改質蒙脫土CS及CSG其XRD分析結果顯示在1.5~8∘都沒有明顯的繞射峰訊號出現,經由布拉格定律的計算可得知,所製備之改質蒙脫土其層間距離大於5.8 nm。 將PP與MPP分別利用溶液法及熔融混煉法與改質蒙脫土製備奈米複材,複材經由XRD分析後結果顯示在1.5~8∘皆沒有繞射峰訊號,TEM結果顯示改質蒙脫在聚丙烯中呈現均勻分佈,層間距離約為20~100 nm之間。複材之熱分析結果顯示,隨著改質蒙脫土含量的增加 ,複材之冷卻結晶峰的溫度都會隨著上昇,但是當添加量到達5 wt % 時,其冷卻結晶峰溫度則開始下降,代表改質蒙脫土含量已經趨近於飽和。由非等溫結晶動力學得知,複材之Avrami 常數n值在10℃/min與30℃/min時,會隨著改質蒙脫土含量增加而上昇,但是當降溫速率提昇至50℃/min時,則隨著改質蒙脫土增加而下降,其結晶速率常數k值隨著改質蒙脫土含量增加而上昇,代表複材之結晶速度也會受到添加改質蒙脫土的影響而變快。於偏光顯微鏡 ( POM ) 發現,隨著改質蒙脫土含量的增加 1~5 wt %,所形成的球晶粒徑下降且數量增加,且複材所形成的球晶都無法觀察到完整的馬爾他十字,外型呈現不規則的變化。由複材的態機械分析結果發現,添加0.36 ~1.89 wt % 的改質蒙脫土,其儲存模數 ( E’ ) 分別較聚丙烯提升20~37 %,在3 wt % 添加量下,本實驗所使用之改質蒙脫土製備的複材,都較商業化改質蒙脫土Cloisite 15A所製備出之複材具有較高的E’值。
In this study, we synthesized the modified silane GT and then we let GT adsorb onto the surface of montomorillonite ( MMT ) via ion-exchange method. Afterward, we added tetraethyl orthosilicate ( TEOS ) to proceed the condensation reaction with GT in aqueous solution, and there were silica particles formed in the galleries of MMT. Furthermore, we added GPS into Clay-Silica ( CS ) to start grafting-reaction and the surface of SiO2 particles carried epoxide groups. Finally, we prepare the modified MMT, Clay-Silica-GPS ( CSG ). In XRD analysis, we found the clay distance of MMT was about 1.23 nm. On the other hand, the CS and CSG which was produced by modifying the MMT is no any apparent peak around 1.5 ~ 8∘. Using Bragg's law, we know the clay distances of MMT in CS and CSG is more than 5.8 nm. While we used SEM to observe the surface of the modified MMT, we found that the evident SiO2 particles were well dispersed on MMT's surface. The particle size of SiO2 was around 12~16 nm. After IR analysis, we found that the MMT grafted with GPS showed the signal of absorption of epoxide ( 917cm-1 ) , and it revealed GPS grafted successfully onto the surface of SiO2 particles. We applied TGA data to calculate the grafting amount of GPS that was equal to 1.10 mmole-GPS/g- inorganic. We used PP and MPP to prepare nano-composites with modified MMT by solution and melt-blending method respectively. After XRD analysis, we find that there is no peaks appearing around 1.5~8∘in the composites. In TEM inspections, it seemed that the galleries of clay dispersed randomly in PP, and the clay distance was around 20 ~ 100 nm. As By using DSC to analyze the composites, the crystallization temperature ( Tp ) of composites raised with the increase of modified MMT. But, when the amount of modified MMT reached 5 wt %, the Tp of composites began to decrease. In the study of non-isothermal crystallization kinetics, we found that the Avrami constants were enhanced with the increase of the amount of the modified MMT at 10 ℃/min and 30 ℃/min. But it decreased with the increase of the amount of the modified MMT while the cooling rate increase to 50 ℃/min. The crystallization rate constat k also increased with the increase MMT and it revealed that the crystallization rate of composites accelerated by the presence of MMT. In POM results, with the increase of MMT ( 1~5 wt % ) , the size of crystal decreased and the number of nucli increased. All these crystals couldn't develop into perfect Maltese Crosses crystals but only show irregular shapes. In DMA analysis, while the content of MMT was increased from 0.36 % to 1.89 %, we found the storage modulus of the composites enhanced by 20%~37% respectively compared with PP. Further more, alter adding 3 wt % MMT into the composites, we found that the series of composites had higher dynamic storage moduli than the series of composites with the commercial modified Cloisite 15A.
URI: http://hdl.handle.net/11455/3705
其他識別: U0005-2508200815064900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200815064900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.