Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3712
標題: 末端官能基型規則樹枝狀高分子之合成與特性分析
Synthesis and Characterization of Unique Dendrimers with Peripheral Functional Groups
作者: 蔡政哲
Tsai, Cheng-Che
關鍵字: Dendrimer
規則樹枝狀分子
Montmorillonite
Shape memory polymer
Polyurethane
蒙脫土
形狀記憶高分子
聚胺酯
出版社: 化學工程學系所
引用: 1. Mason, S. F., Chemical Evolution. Clarendon Press: Oxford, 1991. 2. Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; H. K. Hall Jr., Tetrahedron 1997, 53, 15495-15513. 3. Jiang, D. L.; Aida, T., Prog. Polym. Sci. 2005, 30, 403-422. 4. Xia, F.; Jiang, L., Adv. Mater. 2008, 20, 2842-2858. 5. Buhleier, E.; Wehner, W.; Vogtle, F., Synthesis 1978, 1978, 155-158. 6. Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., Polym. J. 1985, 17, 117-132. 7. Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A., J. Am. Chem. Soc. 1989, 111, 2339-2341. 8. Turro, N. J.; Barton, J. K.; Tomalia, D. A., Acc. Chem. Res. 1991, 24, 332-340. 9. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J., J. Am. Chem. Soc. 1993, 115, 4375-4376. 10. Grayson, S. M.; Frechet, J. M. J., Chem. Rev. 2001, 101, 3819-3868. 11. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., J. Org. Chem. 1985, 50, 2003-2004. 12. Padias, A. B.; Hall, H. K.; Tomalia, D. A.; McConnell, J. R., J. Org. Chem. 1987, 52, 5305-5312. 13. Miller, T. M.; Neenan, T. X., Chem. Mater. 1990, 2, 346-349. 14. Hawker, C. J.; Frechet, J. M. J., J. Am. Chem. Soc. 1990, 112, 7638-7647. 15. Schluter, A. D.; Rabe, J. P., Angew. Chem. Int. Ed. 2000, 39, 864-883. 16. Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Macromolecules 2005, 38, 3044-3047. 17. Roovers, J.; Comanita, B., Adv. Polym. Sci. 1999, 142, 179-228. 18. Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Chem. Commun. 2004, 1608-1609. 19. Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Chem. Commun. 2004, 2110-2111. 20. Matthews, O. A.; Shipway, A. N.; Stoddart, J. F., Prog. Polym. Sci. 1998, 23, 1-56. 21. de Gennes, P. G.; Hervet, H., J. Physique Lett. 1983, 44, 351-360. 22. Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Frechet, J. M. J.; Hawker, C. J.; Wooley, K. L., Macromolecules 1992, 25, 2401-2406. 23. Tomalia, D. A., High Perform. Polym. 2001, 2, S1-S10. 24. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., J. Chem. Soc., Perkin Trans. 2 2000, 2, 1914-1918. 25. Wooley, K. L.; Frechet, J. M. J.; Hawker, C. J., Polymer 1994, 35, 4489-4495. 26. Hawker, C. J.; Malmstrom, E. E.; Frank, C. W.; Kampf, J. P., J. Am. Chem. Soc. 1997, 119, 9903-9904. 27. Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A., Angew. Chem. Int. Ed. 1990, 29, 138-175. 28. de Brabander-van den Berg, E. M. M.; Meijer, E. W., Angew. Chem. Int. Ed. 1993, 32, 1308-1311. 29. Hawker, C. J.; Farrington, P. J.; Mackay, M. E.; Wooley, K. L.; Frechet, J. M. J., J. Am. Chem. Soc. 1995, 117, 4409-4410. 30. Farrington, P. J.; Hawker, C. J.; Frechet, J. M. J.; Mackay, M. E., Macromolecules 1998, 31, 5043-5050. 31. Tomalia, D. A.; Kirchhoff, P. M. U.S. Patent 4,694,064, 1987. 32. Frauenrath, H., Prog. Polym. Sci. 2005, 30, 325-384. 33. Schlüter, A. D., C. R. Chim. 2003, 6, 843-851. 34. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., Macromolecules 1986, 19, 2466-2468. 35. Fischer, M.; Vogtle, F., Angew. Chem. Int. Ed. 1999, 38, 884-905. 36. Moore, J. S.; Xu, Z., Macromolecules 1991, 24, 5893-5894. 37. Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H., Nature 2002, 415, 509-511. 38. Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J., J. Am. Chem. Soc. 1991, 113, 4252-4261. 39. Yamakawa, Y.; Ueda, M.; Nagahata, R.; Takeuchi, K.; Asai, M., J. Chem. Soc., Perkin Trans. 1 1998, 4135-4140. 40. Tully, D. C.; Trimble, A. R.; Frechet, J. M. J., Adv. Mater. 2000, 12, 1118-1122. 41. Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J., Angew. Chem. Int. Ed. 1994, 33, 82-85. 42. L''Abbe, G.; Forier, B.; Dehaen, W., Chem. Commun. 1996, 2143-2144. 43. Gilat, S. L.; Adronov, A.; Frechet, J. M. J., J. Org. Chem. 1999, 64, 7474-7484. 44. Tyler, T. L.; Hanson, J. E., Chem. Mater. 1999, 11, 3452-3459. 45. Abramov, M. A.; Shukla, R.; Amabilino, D. B.; Dehaen, W., J. Org. Chem. 2002, 67, 1004-1007. 46. Ihre, H.; Hult, A.; Frechet, J. M. J.; Gitsov, I., Macromolecules 1998, 31, 4061-4068. 47. Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S., J. Am. Chem. Soc. 1995, 117, 2159-5165. 48. Spindler, R.; Frechet, J. M. J., J. Chem. Soc., Perkin Trans. 1 1993, 913-918. 49. Zeng, F.; Zimmerman, S. C., J. Am. Chem. Soc. 1996, 118, 5326-5327. 50. Deb, S. K.; Maddux, T. M.; Yu, L., J. Am. Chem. Soc. 1997, 119, 9079-9080. 51. Freeman, A. W.; Frechet, J. M. J., Org. Lett. 1999, 1, 685-688. 52. Uchida, H.; Kabe, Y.; Yoshino, K.; Kawamata, A.; Tsumuraya, T.; Masamune, S., J. Am. Chem. Soc. 1990, 112, 7077-7079. 53. Morikawa, A.; Kakimoto, M.; Imai, Y., Macromolecules 1991, 24, 3469-3474. 54. Morikawa, A.; Kakimoto, M. A.; Imai, Y., Polym. J. 1992, 24, 573-581. 55. Kim, C.; An, K., J. Organomet. Chem. 1997, 547, 55-63. 56. Bruning, K.; Lang, H., Synthesis 1999, 1999, 1931-1936. 57. Tatarinova, E. A.; Rebrov, E. A.; Myakushev, V. D.; Meshkov, I. B.; Demchenko, N. V.; Bystrova, A. V.; Lebedeva, O. V.; Muzafarov, A. M., Russ. Chem. Bull. 2004, 53, 2591-2600. 58. Lang, H.; Luhmann, B., Adv. Mater. 2001, 13, 1523-1540. 59. Muzafarov, A. M.; Rebrov, E. A., J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4935-4948. 60. Buschbeck, R.; Bruning, K.; Lang, H., Synthesis 2001, 2289-2298. 61. Simanek, E. E.; Mammen, M.; Gordon, D. M.; Chin, D.; Mathias, J. P.; Seto, C. T.; Whitesides, G. M., Tetrahedron 1995, 51, 607-619. 62. Timmerman, P.; Prins, L. J., Eur. J. Org. Chem. 2001, 2001, 3191-3205. 63. Meijer, E. W.; Bosman, H. J. M.; Vandenbooren, F. H. A. M. J.; De Brabander-Van Den Berg, E. M. M.; Castelijns, A. M. C. F.; De Man, H. C. J.; Reintjens, R. W. E. G.; Stoelwinder, C. J. C.; Nijenhuis, A. J. U.S. Patent 5,610,268, 1997. 64. Maciejewski, M.; Janiszewski, J. Polish Patent PL 176,865, 1999. 65. Maciejewski, M.; Bednarek, E.; Janiszewska, J.; Janiszewski, J.; Szczygiel, G.; Zapora, M., J. Macromol. Sci., Pure Appl. Chem. 2000, 37, 753-783 66. Huck, W. T. S.; Hulst, R.; Timmerman, P.; van Veggel, F. C. J. M.; Reinhoudt, D. N., Angew. Chem. Int. Ed. 1997, 36, 1006-1008. 67. Brunet, P.; Simard, M.; Wuest, J. D., J. Am. Chem. Soc. 1997, 119, 2737-2738. 68. Keana, J. F. W.; Martin, V.; Ralston, W. H. U.S. Patent 5,567,411 1996. 69. Bauer, J.; Bauer, M.; Neumann, J. German Patent DE 95-19528882, 1995. 70. Zhang, W.; Simanek, E. E., Org. Lett. 2000, 2, 843-845. 71. Zhang, W.; Nowlan, I., Daniel T. ; Thomson, L. M.; Lackowski, W. M.; Simanek, E. E., J. Am. Chem. Soc. 2001, 123, 8914-8922. 72. Kim, C. K.; Song, E. S.; Kim, H. J.; Park, C.; Kim, Y. C.; Kim, J. K.; Yu, J. W.; Kim, C., J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 254-263. 73. Kim, C. K.; Song, E. S.; Kim, H. J.; Park, C.; Kim, J. K.; Kim, Y. C.; Yu, J. W.; Kim, C., J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5855-5862. 74. Steffensen, M. B.; Simanek, E. E., Org. Lett. 2003, 5, 2359-2361. 75. Steffensen, M. B.; Simanek, E. E., Angew. Chem. Int. Ed. 2004, 43, 5178-5180. 76. Chouai, A.; Simanek, E. E., J. Org. Chem. 2008, 73, 2357-2366. 77. Rannard, S. P.; Davis, N. J., Org. Lett. 1999, 1, 933-936. 78. Rannard, S.; Davis, N.; McFarland, H., Polym. Int. 2000, 49, 1002-1006. 79. Rannard, S. P.; Davis, N. J., J. Am. Chem. Soc. 2000, 122, 11729-11730. 80. Rannard, S. P.; Davis, N. J., Org. Lett. 2000, 2, 2117-2120. 81. Feast, W. J.; Rannard, S. P.; Stoddart, A., Macromolecules 2003, 36, 9704-9706. 82. Kim, C.; Kim, K. T.; Chang, Y., J. Am. Chem. Soc. 2001, 123, 5586-5587. 83. Kim, C.; Lee, S. J.; Lee, I. H.; Kim, K. T.; Song, H. H.; Jeon, H.-J., Chem. Mater. 2003, 15, 3638-3642. 84. Ko, H. S.; Park, C.; Lee, S. M.; Song, H. H.; Kim, C., Chem. Mater. 2004, 16, 3872-3876. 85. Park, C.; Choi, K. S.; Song, Y.; Jeon, H.-J.; Song, H. H.; Chang, J. Y.; Kim, C., Langmuir 2006, 22, 3812-3817. 86. Jeon, H. J.; Kang, M. K.; Park, C.; Kim, K. T.; Chang, J. Y.; Kim, C.; Song, H. H., Langmuir 2007, 23, 13109-13116. 87. Ueda, M.; Seki, K.; Imai, Y., Macromolecules 1982, 15, 17-20. 88. Ueda, M.; Kameyama, A.; Hashimoto, K., Macromolecules 1988, 21, 19-24. 89. Ueda, M.; Mori, H., Bull. Chem. Soc. Jpn. 1992, 65, 1636-1641. 90. Okazaki, M.; Washio, I.; Shibasaki, Y.; Ueda, M., J. Am. Chem. Soc. 2003, 125, 8120-8121. 91. Washio, I.; Shibasaki, Y.; Ueda, M., Org. Lett. 2003, 5, 4159-4161. 92. Washio, I.; Shibasaki, Y.; Ueda, M., Macromolecules 2005, 38, 2237-2246. 93. Yamazaki, N.; Washio, I.; Shibasaki, Y.; Ueda, M., Org. Lett. 2006, 8, 2321-2324. 94. Washio, I.; Shibasaki, Y.; Ueda, M., Org. Lett. 2007, 9, 1363-1366. 95. Spindler, R.; Frechet, J. M. J., Macromolecules 1993, 26, 4809-4813. 96. Bruchmann, B.; Wingerter, F.; Graf, H.; Wolff, S. U.S. Patent 5,981,684 1995. 97. Reemers, S.; Mourran, A.; Keul, H.; Moller, M., J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1372-1386. 98. Taylor, R. T.; Puapaiboon, U., Tetrahedron Lett. 1998, 39, 8005-8008. 99. Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M., Macromolecules 2002, 35, 6224-6231. 100. Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M., Macromolecules 2002, 35, 6232-6238. 101. Staudinger, H.; Göhring, O.; Schöller, M., Chem. Ber. 1914, 47, 40-48. 102. Ebnöther, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; R. Süess, A. V., Helv. Chim. Acta 1959, 42, 918-955. 103. Poshkus, A. C.; Herweh, J. E., J. Org. Chem. 1965, 30, 2466-2469. 104. Martin, J. C.; Burpitt, R. D.; Gott, P. G.; Harris, M.; Meen, R. H., J. Org. Chem. 1971, 36, 2205-2210. 105. 陳衍甫. 國立中興大學化學工程學系碩士論文, 2001. 106. Imai, Y.; Hirukawa, H., Polym. J. 1973, 4, 93-99. 107. 吳美儀. 國立中興大學化學工程學系碩士論文, 2003. 108. Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J., J. Appl. Polym. Sci. 2007, 103, 3591-3599. 109. Chen, C. P.; Dai, S. A.; Chang, H.-L.; Su, W. C.; Jeng, R. J., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 682-688. 110. Ray, S. S.; Okamoto, M., Prog. Polym. Sci. 2003, 28, 1539-1641. 111. Ploehn, H. J.; Liu, C., Ind. Eng. Chem. Res. 2006, 45, 7025-7034. 112. Cole, K. C., Macromolecules 2008, 41, 834-843. 113. Lide, D. R., CRC Handbook of Chemistry and Physics, 89th Edition. National Institute Standards and Technology: 2008. 114. Lagaly, G., Angew. Chem. Int. Ed. 1976, 15, 575-586. 115. Lagaly, G., Solid State Ionics 1986, 22, 43-51. 116. Kopka, H.; Beneke, K.; Lagaly, G., J. Colloid Interface Sci. 1988, 123, 427-436. 117. Lagaly, G., Clays Clay Miner. 1982, 30, 215-222. 118. Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Chem. Mater. 1994, 6, 1017-1022. 119. Osman, M. A.; Ploetze, M.; Suter, U. W., J. Mater. Chem. 2003, 13, 2359-2366. 120. Osman, M. A.; Ploetze, M.; Skrabal, P., J. Phys. Chem. B 2004, 108, 2580-2588. 121. Heinz, H.; Vaia, R. A.; Krishnamoorti, R.; Farmer, B. L., Chem. Mater. 2007, 19, 59-68. 122. Balazs, A. C.; Singh, C.; Zhulina, E., Macromolecules 1998, 31, 8370-8381. 123. Singh, C.; Balazs, A. C., Polym. Int. 2000, 49, 469 - 471. 124. Plummer, C. J. G.; Garamszegi, L.; Leterrier, Y.; Rodlert, M.; Manson, J.-A. E., Chem. Mater. 2002, 14, 486-488. 125. Acosta, E. J.; Deng, Y.; White, G. N.; Dixon, J. B.; McInnes, K. J.; Senseman, S. A.; Frantzen, A. S.; Simanek, E. E., Chem. Mater. 2003, 15, 2903-2909. 126. Costa, A. S.; Imae, T.; Takagi, K.; Kikuta, K., Progr. Colloid Polym. Sci. 2004, 128, 113-119. 127. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J., Macromolecules 2001, 34, 8832-8834. 128. Chou, C. C.; Shieu, F. S.; Lin, J. J., Macromolecules 2003, 36, 2187-2189. 129. Chou, C. C.; Lin, J. J., Macromolecules 2005, 38, 230-233. 130. Buehler, W. J.; Gilfrich, J. V.; Wiley, R. C., J. Appl. Phys. 1963, 34, 1475-1477. 131. Mantovani, D., JOM 2000, 52, 36-44. 132. Wei, Z. G.; Sandstroröm, R.; Miyazaki, S., J. Mater. Sci. 1998, 33, 3743-3762. 133. Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R., Nature 2005, 434, 879-882. 134. Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Azhgozhinova, G. S.; Shaikhutdinov, E. M.; Park, K., Macromol. Rapid Commun. 2002, 23, 965-967. 135. Lu, J.; Kim, S. G.; Lee, S.; Oh, I. K., Adv. Funct. Mater. 2008, 18, 1290-1298. 136. Paik, I. H.; Goo, N. S.; Jung, Y. C.; Cho, J., Smart Mater. Struct. 2006, 15, 1476-1482. 137. Miyata, T.; Asami, N.; Uragami, T., Nature 1999, 399, 766-769. 138. Uchida, M.; Kurosawa, M.; Osada, Y., Macromolecules 1995, 28, 4583-4586. 139. Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K.; Wang, G.; Grosberg, A. Y.; Masamune, S.; Tanaka, T., Macromolecules 2000, 33, 8693-8697. 140. Charlesby, A., Atomic Radiation and Polymers. Pergamon Press: 1960. 141. Ota, S., Radiat. Phys. Chem. 1981, 18, 81-87. 142. Shirai, Y.; Hayashi, S., Mitsubishi Tech. Bull. 1988, 184, 1-6. 143. Shirai, Y.; Hayashi, S., Mitsubishi Tech. Bull. 1988, 184, 213-219. 144. Hirai, T.; Maruyama, H.; Suzuki, T.; Hayashi, S., J. Appl. Polym. Sci. 1992, 45, 1849-1855. 145. Kobayashi, K.; Shunichi, S. U.S. Patent 5,128,197, 1992. 146. Kagami, Y.; Gong, J. P.; Osada, Y., Macromol. Rapid Commun. 1996, 17, 539-543. 147. Kim, B. K.; Lee, S. Y.; Xu, M., Polymer 1996, 37, 5781-5793. 148. Skákalová, V.; Luke, V.; Breza, M., Macromol. Chem. Phys. 1997, 198, 3161-3172. 149. Wang, M.; Luo, X.; Zhang, X.; Ma, D., Polym. Adv. Technol. 1997, 8, 136-139. 150. Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K., J. Appl. Polym. Sci. 1997, 64, 1511-1516. 151. Goethals, E. J.; Reyntjens, W.; Lievens, S., Macromol. Symp. 1998, 132, 57-64. 152. Osada, Y.; Gong, J., Adv. Mater. 1998, 10, 827-837. 153. Li, F.; Chen, Y.; Zhu, W.; Zhang, X. X., Polymer 1998, 39, 6929-6934. 154. Reyntjens, W. G.; Prez, F. E. D.; Goethals, E. J., Macromol. Rapid Commun. 1999, 20, 251-255. 155. Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D., Macromolecules 1999, 32, 1194-1203. 156. Wang, M.; Zhang, L., J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 101-112. 157. Jeon, H. G.; Mather, P. T.; Haddad, T. S., Polym. Int. 2000, 49, 453-457. 158. Mather, P. T.; Jeon, H. G.; Haddad, T. S., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2000, 41, 528-529. 159. Maitland, D. J.; Lee, A. P.; Schumann, D. L.; Silva, L. D. U.S. Patent 6,102,917 2000. 160. Li, F.; Perrenoud, A.; Larock, R. C., Polymer 2001, 42, 10133-10145. 161. Li, F.; Larock, R. C., J. Appl. Polym. Sci. 2002, 84, 1533-1543. 162. Lendlein, A.; Langer, R., Science 2002, 296, 1673-1676. 163. Lendlein, A.; Kelch, S., Angew. Chem. Int. Ed. 2002, 41, 2034-2057. 164. Ping, P.; Wang, W.; Chen, X.; Jing, X., Biomacromolecules 2005, 6, 587-592. 165. Wilson, T. S.; Maitland, D. J. U.S. Patent 20050075405 2005. 166. Small IV, W.; Wilson, T. S.; Benett, W. J.; Loge, J. M.; Maitland, D. J., Opt. Express 2005, 13, 8204-8213. 167. Chun, B. C.; Cho, T. K.; Chung, Y. C., Eur. Polym. J. 2006, 42, 3367-3373. 168. Liu, G.; Guan, C.; Xia, H.; Guo, F.; Ding, X.; Peng, Y., Macromol. Rapid Commun. 2006, 27, 1110-1104. 169. Buckley, P. R.; McKinley, G. H.; Wilson, T. S.; Small IV, W.; Benett, W. J.; Bearinger, J. P.; McElfresh, M. W.; Maitland, D. J., IEEE T. Bio-med. Eng. 2006, 53, 2075-2083. 170. Baer, G.; Wilson, T. S.; Matthews, D. L.; Maitland, D. J., J. Appl. Polym. Sci. 2006, 103, 3882-3892. 171. Zhu, Y.; Hu, J.; Yeung, L.-Y.; Liu, Y.; Ji, F.; Yeung, K.-w., Smart Mater. Struct. 2006, 16, 1385-1394. 172. Tobushi, H.; Hayashi, S.; Hoshio, K.; Miwa, N., Smart Mater. Struct. 2006, 15, 1033-1038. 173. Yang, B.; Huang, W. M.; Li, C.; Li, L., Polymer 2006, 47, 1348-1356. 174. Cao, Q.; Liu, P., Polym. Bull. 2006, 57, 889-899. 175. Yakacki, C. M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K., Biomaterials 2007, 28, 2255-2263. 176. Buckley, C. P.; Prisacariu, C.; Caraculacu, A., Polymer 2007, 48, 1388-1396. 177. Ji, F. L.; Hu, J. L.; Li, T. C.; Wong, Y. W., Polymer 2007, 48, 5133-5145. 178. Zhang, S.; Feng, Y.; Zhang, L.; Sun, J.; Xu, X.; Xu, Y., J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 768-775. 179. Zhang, C.-S.; Ni, Q.-Q.; Fu, S.-Y.; Kurashiki, K., Compos. Sci. Technol. 2007, 67, 2973-2980. 180. Rezanejad, S.; Kokabi, M., Eur. Polym. J. 2007, 43, 2856-2865. 181. Miaudet, P.; Derré, A.; Maugey, M.; Zakri, C.; Piccione, P. M.; Inoubli, R.; Poulin, P., Science 2007, 38, 1294-1296. 182. Ni, Q. Q.; Zhang, C. S.; Fu, Y.; Dai, G.; Kimura, T., Compos. Struct. 2007, 81, 176-184. 183. Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A., Biomacromolecules 2007, 8, 1018 -1027. 184. Cao, F.; Jana, S. C., Polymer 2007, 48, 3790-3800. 185. Liu, C.; Qin, H.; Mather, P. T., J. Mater. Chem. 2007, 17, 1543-1558. 186. Razzaq, M. Y.; Anhalt, M.; Frormann, L.; Weidenfeller, B., Mater. Sci. Eng., A 2007, 471, 57-62. 187. Chung, T.; Romo-Uribe, A.; Mather, P. T., Macromolecules 2008, 41, 184 -192. 188. Kunzelman, J.; Chung, T.; Mather, P. T.; Weder, C., J. Mater. Chem. 2008, 18, 1802-1806. 189. Bayer, O.; Siefken, W.; Rinke, H.; Orthner, L.; Schild., H. German Patent DRP 728,981, 1937. 190. Oertel, G., Polyurethane Handbook. Free Press: 1985. 191. Lelah, D.; Cooper, S. L., Polyurethanes in Medicine. CRC Press: 1986. 192. Kim, B. K.; Lee, S. Y.; Lee, J. S.; Baek, S. H.; Choi, Y. J.; Lee, J. O.; Xu, M., Polymer 1998, 39, 2803-2808. 193. d''Arlas, B. F.; Rueda, L.; Caba, K. d. l.; Mondragon, I.; Eceiza, A., Polym. Eng. Sci. 2008, 48, 519-529. 194. Li, F.; Hou, J.; Zhu, W.; Zhang, X.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K., J. Appl. Polym. Sci. 1996, 62, 631-638. 195. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J., polymer 2005, 46, 11849-11857. 196. Dai, S. A.; Chen, C. P.; Lin, C. C.; Chang, C. C.; Wu, T. M.; Su, W. C.; Chang, H. L.; Jeng, R. J., Macromol. Mater. Eng. 2006, 291, 395-404. 197. Liu, C.; Chun, S. B.; Mather, P. T.; Zheng, L.; Haley, E. H.; Coughlin, E. B., Macromolecules 2002, 35, 9868-9874. 198. Lin, H. C.; Wu, S. K., Scr. Metall. Mater. 1992, 26, 59-62. 199. Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.; Minch, B.; Wegner, G., J. Am. Chem. Soc. 2005, 127, 15107-15111. 200. Vutukuri, D. R.; Basu, S.; Thayumanavan, S., J. Am. Chem. Soc. 2004, 126, 15636-15637. 201. Chen, Y.; Ambade, A. V.; Vutukuri, D. R.; Thayumanavan, S., J. Am. Chem. Soc. 2006, 128, 14760-14761. 202. Mertz, E.; Elmer, S. L.; Balija, A. M.; C, Z. S., Tetrahedron 2004, 60, 11191-11204. 203. Ambade, A. V.; Savariar, E. N.; Thayumanavan, S., Molecular Pharmaceutics 2005, 2, 264-272. 204. Darbre, T.; Reymond, J.-L., Acc. Chem. Res. 2006, 39, 925-934. 205. Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., Langmuir 2005, 21, 11981-11986. 206. Naka, K.; Fujita, M.; Tanaka, K.; Chujo, Y., Langmuir 2007, 23, 9057-9063. 207. Estroff, L. A.; Hamilton, A. D., Chem. Rev. 2004, 104, 1201-1217. 208. Stutz, H., J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 333-340. 209. Lorenz, K.; Muelhaupt, R.; Frey, H.; Rapp, U.; Mayer-Posner, F. J., Macromolecules 1995, 28, 6657-6661. 210. Patzkó, Á.; Dékány, I., Colloids Surf., A 1993, 71, 299-307. 211. Vaia, R. A.; Sauer, B. B.; Tse, O. K.; Giannelis, E. P., J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 59-67. 212. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J., Macromolecules 2001, 34, 8832-8834. 213. Reemers, S.; Mourran, A.; Keul, H.; Möller, M., J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1372-1386. 214. Sun, C. X.; van der Mee, M. A. J.; Goossens, J. G. P.; van Duin, M., Macromolecules 2006, 39, 3441-3449. 215. Sánchez-Adsuar, M. S.; Papon, E.; Villenave, J. J., Polym. Int. 2000, 49, 591-598. 216. Teo, L.-S.; Chen, C.-Y.; Kuo, J.-F., Macromolecules 1997, 30, 1793-1799. 217. Coleman, M. M.; Sobkowiak, M.; Pehlert, G. J.; Painter, P. C.; Iqbal, T., Macromol. Chem. Phys. 1997, 198, 117-136. 218. 陳志平. 國立中興大學化學工程學系博士論文, 2004. 219. Brunette, C. M.; Hsu, S. L.; MacKnight, W. J., Macromolecules 1982, 15, 71-77. 220. Greenberg, S. A.; Alfrey, T., J. Am. Chem. Soc. 1954, 76, 6280-6285. 221. Lee, J. L.; Pearce, E. M.; Kwei, T. K., Macromolecules 1997, 30, 6877-6883. 222. Zhang, Y.; Leblanc-Boily, V. r.; Zhao, Y.; Prud’homme, R. E., Polymer 2005, 46, 8141–8150. 223. Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T., Polymer 2006, 47, 3073-3082.
摘要: 利用具有選擇性之雙官能基單體(4-isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino)diphenylmethane (IDD))以收斂式合成出5種(C10、C14及C18、phenol及diol)系列polyurea/malonamide dendrimer,免除傳統添加觸媒、保護及活化步驟。研究內容分為二部份:首先合成不同外圍官能基polyurea/malonamide dendrimer,藉由isocyanate分別與氫氧基及胺基產成urethane及urea鍵結,再配合由azetidine-2,4-dione官能基與一級胺開環反應形成malonamide鍵結,進行dendrimer材料之合成及分析,然後進行dendrimers於無機材料改質及聚胺酯應用。 蒙脫土(montmorillonite)(MMT)為一無機層狀天然黏土,原始MMT呈現親水性,可均勻分散於水或是醇類,與親油性高分子並不相容。影響層間距的因素可區分為CEC值、分子大小、分枝程度及親疏水性。本研究藉由結構設計達成簡化矽酸鹽層改質及分散,以離子交換方式將C10、C14及C18系列poly(urea/malonamide) dendrimer接枝至蒙脫土表面,並藉由dendrimer的三維立體結構、自我組裝及親疏水性增加層間距,以進一步達到脫層形態。其中不同代數C10系列dendrimer較輕易進入MMT層間,插層形態層間距分別為40 Å、67 Å及38 Å,此外[G2]-C10/MMT及[G3]-C10/MMT可觀察到脫層形態共存現象,但整體分散效果以[G2]-C10/MMT較佳。 形狀記憶材料為一種能感應外界刺激,記憶形變並且回復的新型功能性材料。聚胺酯具有獨特的物性及功能,如高彈性、高伸長率、抗溶劑、抗酸與耐磨損等,再加上製備程序上迅速及簡便之優勢,成為開發形狀記憶材料的首選。研究中導入poly(urea/malonamide) dendrimer製備側鏈樹枝化聚胺酯,由於dendrimers具備豐富氫鍵的官能基,預期產生熱可逆的物理性交聯來補強聚胺酯材料的強度,結合提高物理交聯密度及提升分子作用力兩項優點,提升整體材料的機械性質及形狀記憶特性;並且研究不同代數dendrimer及硬鏈段組成比例對於聚胺酯材料形態學的影響。分別利用C10與C18系列dendrimer製備側鏈樹枝化聚胺酯,並且與傳統線性聚胺酯比較,材料的硬鏈段組成需高於35 %,才具備較佳熱穩定性及形變加工溫度區間。就機械性質而言,輕微相混合形態具備較佳斷裂點抗張強度與斷裂點伸長率,特別是[D1-XX]-C18可達18 Mpa及680 %,大幅改善線性聚胺酯材料硬脆的缺陷。形狀記憶測試中發現C18系列樹枝狀鏈延長劑導入,可大幅提升硬鏈段物理交聯強度,在形變過程中扮演維持永久形狀的架構,其回復率可提升至90 %以上且回復時間低於10 sec,其中[D2-XX]-C18系列可達100 %回復且回復時間低於3 sec,甚至在捲曲形變測試中,材料可迅速回復且無損傷。
Synthesis, characterization and application of poly(urea/malonamide) dendrimers are described in this study. The dual functional building block (4-isocyanato-4'(3,3-dimethyl-2,4-dioxo-azetidino)diphenylmethane (IDD)) was selected to prepare five series of dendrimers via convergent route. Utilizing high reactivity of isocyanate and selectivity of azetidine-2,4-dione, the sequential addition reactions were developed under mild condition without resorting to painstaking protection-deprotection or activation methodology. Furthermore, these poly(urea/malonamide) dendrimers are empolyed in montmorillonite (MMT) and polyurethane (PU) modification. MMT is the most commonly layered silicate with high aspect ratios. Employing suitable surfactants with simple ion-exchange reactions could achieve different natures of morphologies: intercalated, intercalated-and-flocculated and exfoliated. In general, most of the traditional surfactants are linear forms, even though the interlayer d-spacing can be increased, but still maintain intercalated feature of nanocomposites. Hence, the incorporation of dendritic surfactants may precisely control the d-spacing between layered silicates because of the presence of their geometric architecture and hydrophobic property. The dendritic structure even with low molecular weight could effectively intercalate the layered silicates and enlarge the d-spacing to 40 Å ([G1]-C10/MMT). On the other hand, dendritic structures with higher molecular weight would increase the steric hindrance and hydrophobic effect, which could effortlessly lead to exfoliated morphology as compared to the traditional linear surfactants. Recently, the shape-memory materials which can sense and respond to external stimulus have attracted great interest due to its potential applications. Generally speaking, shape-memory materials can divide into three categories, which include metal alloy, ceramic material and polymer. Particularly, the PU system with the advantages of low cost, excellent processability and facile modification can be applied to biomedical materials or resin industry. The better shape recovery characteristics and environmental practicality are still in great demand for future applications. Herein a unique type of the PU elastomers have been achieved, by incorporating the different generations of dendrimers as the chain extender and switch the hard segment contain. The abadeant hydrogen bonding of poly(urea/malonamide) dendrimers would significantly improve the mechanical properties and shape memory effects. The appearance of phase-mixed morphology and the increase of hydrogen bonding sites could improve the tensile properties. Especially, the [D1-XX]-C18 samples even exhibited elongations higher than 650 %, as well as tensile strengths of approximately 18 Mpa. For cyclic shape memory test, the recovery ratio of side chain dendritic PUs were increased to 90 %, whereas the recovery time were decreased to less than 10 second. In addition, fully recovery of [D2-XX]-C18 PU required less than 3 second without any creases or defects.
URI: http://hdl.handle.net/11455/3712
其他識別: U0005-2912200817004900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2912200817004900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.