Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3714
標題: 新穎平整劑的開發及應用於電鍍銅填充盲、通孔
Development of a novel leveler and its application on copper electroplating for via and through hole filling
作者: 劉德暉
Liou, Da-Huei
關鍵字: copper plating
電鍍銅
levele
blind viar
though hole
平整劑
盲孔
通孔
出版社: 化學工程學系所
引用: 1.林定浩,“高密度印刷電路板技術 ,第五章,台灣電路板協會,民國93年。 2.H.Xiao,“Introduction to Semiconductor Manufacturing Technology, chapter 11, Prentice-Hall Inc., 2001 3.B.R.Murthy, M. M. Roy, K. Ahila, and D. C. Frye “Reactive Ion Etching and Characterization of p-Silk Ultra Low-k Film IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 18, 1, 2005 4.L.Xu, P.Dixit, J.Miaro, J.H.L.Pang, X.Zhang, K.H.Tu, and R.Preisser “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwinsAppl. Phys. Lett. 90,03311, 2007 5.Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction, J. Electrochem. Soc., 142 , L87, 1995. 6.W. P. Dow, H.S. Huang, M.Y.Yen, and H. H. Chen “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition J. Electrochem. Soc., 152,C77,2005 7.W.Shao, G. Pattanaik,and G.Zangari“Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolyte, J. Electrochem. Soc., 154 ,D201 ,2007 8.G. M. Brown, and G .A. Hope“A SERS study of SO42-/Cl-ion adsorption at a copper electrode in situ, J. Electroanal. Chem., 405,211,1996 9.N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition , Sov. Electrochem., 24, 1564, 1989. 10. J. P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath PartⅡ.The instability of 4, 5-dithiaoctane-1, 8-disulphonic acid in the bath on open circuit, J. Electroanal. Chem., 338, 167, 1992. 11.S. N. Jenq , C. C. Wan, and Y. Y. Wang,“The influence of self-assembled disulfide additive on the pattern shape by Cu electrodeposition through mask, J. Electroanal. Chem. ,609,68 ,2007 12. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption behavior of polyoxyenthylene glycol on the copper surface in an acid copper sulphate bath, Denki Kagaku, 52, 218, 1984. 13. J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol Ⅰ. Quartz Crystal Microbalance Study, J. Electrochem. Soc., 145, 3472, 1998。 14. Z. V. Feng and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study, J. Phys. Chem. B., 107,9415, 2003. 15. W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating, J. Electrochem. Soc., 152, C769, 2005. 16. B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, Tong-Ling Xiang, and Guo-Nan Chen“ In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode J. Electrochem. Soc., 154,D516,2007 17. 方景禮,“電鍍添加劑總論,第一版,第4章,傳勝出版社,民國87年 18. G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium, Mater. Chem. and Phys., 56, 27, 1998. 19. M. E. Biggin and A. A. Gewirth, “Infrared Studies of Benzotriazole on Copper Electrode Surfaces", J. Electrochem. Soc., 148, C339, 2001. 20. Z.V. Feng, A. A. Gewirth, “Atomic force microscopic study of polymeric film growth in copper electroplating bath with benzotriazole, J. Electroanal. Chem.601,242,2007 21. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly,G. R. Stafford, and D.Josell, “Superconformal Electrodeposition of Copper in 500-90nm Features, J. Electrochem. Soc., 147, 4524, 2000. 22. J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives, Electrochem. Solid-State Lett., 2, 561, 1999. 23. D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, “Superconformal Electrodeposition in Submicron Features, Phys. Rev. Lett., 87, 2001. 24. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper damascene electrodeposition and additives, J. Electroanal. Chem., 559, 137, 2003. 25. J. Wang, “Analytical Electrochemistry, 2nd ed., Chapter 1, WILEY&SONS,INC.,2000 26. A. J. Bard, and L. R. Faulkner “Electrochemical Methods Fundamentals and Applications, 2nd ed. ,Chapter 1, WILEY&SONS,INC. ,2001 27. M. Paunovic, and M. Schlesinger,“Fundamentals of Electrochemical Depostion , 2nd ed., Chapter 6 ,WILEY&SONS,INC. ,2006 28. D. Josell, D. Wheeler, S.-K. Kim, and T. P. Moffat, “Curvature Enhanced Adsorbate Coverage Model for Electrodeposition, J. Electrochem. Soc., 153, C127, 2006. 29. Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. C. West, “Three-Additive Model of Superfilling of Copper, J. Electrochem. Soc., 148, C446, 2001. 30. R. Tenno, and A. Pohjoranta, “A Method of Microvia-Filling Process in a Copper Plating With Additives, J. Electrochem. Soc., 152, C769, 2007. 31. R. Tenno, and A. Pohjoranta, “An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives, J. Electrochem. Soc., 155 D383 2008. 32. 汪健民,“材料分析”,第三版,第五章,中國材料科學學會,民國93年 33. 汪健民,“材料分析”,第三版,第七章,中國材料科學學會,民國93年 34. 汪健民,“材料分析”,第三版,第六章,中國材料科學學會,民國93年 35. C. G. Guymon, J. N. Harb, R. L. Rowley, and D. R. Wheeler, “MPSA effects on copper electrodeposition investigated by molecular dynamics simulations J.Chem. Phys. 128, 044717 2008
摘要: 為了增加電子產品的功能及使得它們的體積變得更小,在晶圓和印刷電路板的製造技術上都有改變。例;如,晶圓製造技術上運用了雙鑲嵌製程─即是利用直接電鍍的方式將銅導線填充於導通道中,取代了傳統的鋁製程。為完成印刷電路板中的高密度內連接,增層法被應用於連接印刷電路板中的每個盲孔和通孔。盲孔或通孔的金屬化製程也是直接利用電鍍的方式完成。本論文在於開發出一種新的平整劑─是銅電鍍液中的一種重要添加劑,並了解平整劑在導孔填充中的影響。 一開始我們選用四種新穎的平整劑於導孔填充部份並試著比較不同平整劑的填充能力。進一步的,吾人找出一種新穎的平整劑─命名為TNTBC,當硫酸濃度控制在適當的濃度下在盲孔或通孔金屬化製程中有較好的填充能力。根據金相光學顯微鏡、掃描式電子顯微鏡和X光繞射光譜的結果,我們發現在銅電鍍液中不同濃度的硫酸不僅會改變銅沈積的結構也會影響到電鍍液的填充能力。吾人使用計時電位法和循環伏安法來證明硫酸能減少TNTBC的消耗速率。吾人又利用掃描式電子顯微鏡觀察在改變質傳效用下的銅沈積之表面結構。根據銅沈積結構變化,吾人發現TNTBC和氯離子會形成壹層錯合物薄膜吸附於銅層上。這一層錯合物薄膜會減少銅離子的通量因此使得銅晶粒成長變得較困難。根據能量散射光譜分析,吾人發現TNTBC會夾鍍在銅沈積中。依據能量散射光譜和電鍍填孔結果,吾人證明了填孔機制遵循吸附、消耗和擴散(dsorption-comsumption-diffustion, ACD)機制。
In order to enhance the functions of electronic products and let their size become smaller, the manufacture teachnologies of chips and printed circuit boards (PCBs) have to be changed. For example, the Dual Damascus Process has been used in chip manufacture to replace the traditional aluminum process, that is, copper conducting lines are filled into trenches by means of electroplating. To carry out high density interconnectionof PCB, “build up process is employed to connect each blind via or though hole built in the PCB. The matellization process of blind via or though hole is also achieved by means of copper electroplating. The major topic of this thesis is to develop a new leveler, which is an important leveler in copper electroplating solution and to understand the effect of the leveler in hole filling. In the beginning, we selected four novel additives as levelers for hole filling and tried to compare the filling performance of various leveler. Furthermore, we found out that a novel leveler, namely TNTBC, has better filling performance in metallization of blind via or though hole when the concentration of surfluric acid is controlled at an appropriate level. According to those results of OM, SEM and XRD, we discovered that different concentration of sulfuric acid in the copper electroplating solution does not only change the structure of copper deposit but also influence the filling capability of the plating solution. We used chronopotentimetry and cyclic voltammetry method to prove that sulfuric acid can reduce the comsumption rate of TNTBC. We used SEM to observe the topographic of the copper deposit under the condition of various effectiveness of mass transport. According to the structure variation of the copper deposit, we found that TNTBC and chloride ions may form a complex film to adsorb onto copper layer. The adsorbed complex film reduced the flux of copper ion and thus made the growth of copper grain more difficult. According to the EDS analyses, we found that TNTBC is incorporated into the copper deposit. According to the results of EDS analyses and the filling plating, we proved that the filling mechanism does obey a model of adsorption-comsumption-diffustion (ACD) proposed in a previous work.
URI: http://hdl.handle.net/11455/3714
其他識別: U0005-3007200812293500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200812293500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.