Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3720
標題: 聚醯胺/無鹵耐燃劑/無機物奈米複合材料製備與物性分析
Preparation and Physical Properties of Polyamide/Halogen-Free Flame Retardant/Inorganic Materials Nanocomposites
作者: 林文義
Lin, Wen-Yi
關鍵字: Polyamide
尼龍
Halogen-Free Flame Retardant
Nanocomposite
無鹵耐燃劑
奈米複合材料
出版社: 化學工程學系所
引用: 六、參考文獻 [1] 張豐志, “應用高分子手冊”, 第347~348頁、第350、356頁, 五南圖書出版公司, (2003) [2] 周永隆, 陳瑞鑫, “難燃材料的發展趨勢與應用” 化工資訊與商情, No.62, (2008) [3] 柯揚船, 皮特斯壯, 聚合物-無機奈米複合材料, 第217頁、第 255~256頁, 五南圖書出版公司, (2004) [4] 謝正悅, 林慶炫, 王春山, “非鹵素難燃電子材料”, 科學資訊月刊, 第28卷, 第11期, 第844頁, (2000) [5] 郭文法, “奈米無機層材在難燃複材的應用” 化工資訊與商情, No.65, 第45~47頁, (2008) [6] Robitschek, P.; Bean, C. T., Ind. Eng. Chem. 46, 1682 (1954) [7] 廖如仕, “無鹵難燃材料的發展” 永續產業發展雙月刊, No.17, (2004) [8] Akelah, A. and Moet, A., Journal of Applied Polymer Science:Applied Polymer Symposium, 55, 153 (1994) [9] Kojoma, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T. and Kamiagaito, O., Journal of Polymer Science, 31, 1755 (1993) [10] Usuki, A.; Kojoma, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T. and Kamiagaito, O., Polymer Prepr., 28, 447 (1987) [11] 漆宗能, 尚文宇, 聚合物/層狀矽酸鹽奈米複合材料, 第150頁, 五南圖書出版公司, (2004) [12] Cho, J. W.; Paul, D. R., Polymer, 42, 1083-1094 (2001) [13] Sheley, J. S.; Mather, P. T.; DeVries, K. L., Polymer, 42, 5849-5858 (2001) [14] Levchik, S. V.; Levchik, G. F.; Camino, G.; Costa, L.; Lesnikovich, A. I., Fire and Material, 20, 183-190 (1996) [15] Song, L.; Hu, Y.; Lin, Z.; Xuan, S.; Wang, S.; Chen, Z.; Fan, W., Polymer Degradation and Stability, 86, 535-540 (2004) [16] Kashiwagi, T.; Harris Jr, R. H.; Zhang, X.; Briber, R. M.; Cipriano, B. H.; Raghavan, S. R.; Awad, W. H.; Shields J. R., Polymer, 45, 881-891 (2004) [17] Hao, X.; Gai, G.; Liu, J.; Yang, Y.; Zhang, Y.; Nan, C., Materials Chemistry and Physics, 96, 34-41 (2006) [18] Chen, Y.; Wang, Q., Polymer Degradation and Stability, 91, 2003-2013 (2006) [19] Wang, Z.; Feng, Z.; Liu, Y.; Wang, Q., Journal of Applied Polymer Science, 105, 3317-3322 (2007) [20] Dahiya, J. B.; Muller-Hagedorn, M.; Bockhorn, H.; Kandola, B. K., Polymer Degradation and Stability, 93, 2038-2041 (2008) [21] Casu, A.; Camino, G.; Giorgi, M. D.; Flath, D.; Morone, V.; Zenoni, R., Polymer Degradation and Stability, 58, 297-302 (1997) [22] Wang, F.; Ma, C.; Wu, W., Journal of Applied Polymer Science, 73, 881-887 (1999) [23] Qin, H.; Su, Q.; Zhang, S.; Zhao, B.; Yang, M., Polymer, 44, 7533-7538 (2003) [24] Liu, Y.; Wang, Q., Polymer Degradation and Stability, 91, 3103-3109 (2006) [25] Li, L.; Li, B.; Tang, F., European Polymer Journal, 43, 2604-2611 (2007) [26] Braun, U.; Schartel, B.; Fichera, M. A.; Jager, C., Polymer Degradation and Stability, 92, 1528-1545 (2007) [27] Xu, X.; Li, B.; Lu, H.; Zhang, Z., Applied Surface Science, 254, 1456-1462 (2007) [28] Mu, B.; Wang, Q.; Wang, T.; Wang, H.; Jian, L., Polymer Engineering and Science, 48, 203-209 (2008) [29] Li, L.; Chen, G.; Liu, W.; Li, J.; Zhang, S., Polymer Degradation and Stability, 94, 996-1000 (2009) [30] Kawasaki, T.; Kawasaki, T.; Kawasaki, K.; Kawasaki, O., U.S. Patent # 6,815,477 B1 (2004) [31] Diedorf, S.; Gersthofen, O., U.S. Patent # 7,255,814 B2 (2007) [32] Steppach, C.; Diedorf, S., U.S. Patent # 7,449,508 B2 (2008) [33] Fenimore, C. P.; Martin, F. J., Modern Plastic, 44, 141-148 (1996) [34] Mohanty, S.; Nayak, S. K., Polymer Composites, 28, 153-162 (2007) [35] Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, Ph., Materials Science and Engineering, 63, 100-125 (2009) [36] Varley, R. J.; Groth, A. M.; Leong, K. H., Composites Science and Technology, 68, 2882-2891 (2008)
摘要: 摘 要 本研究中主要使用熔融混煉法製備出尼龍/無鹵耐燃劑/無機物奈米複合材料。在本系統中所添加的無機物有: 黏土、滑石粉、雲母、玻纖。實驗的目的在探討無鹵耐燃劑及無機物對複材的耐燃效果。因無鹵耐燃劑價格較昂貴因此添加無機物之主要目的在於降低無鹵耐燃劑含量達到降低使用成本。因此使用不同的無機物來取代部分無鹵耐燃劑,使尼龍複材達到相同的耐燃效果。 由限氧指數(Limiting Oxgen Index, LOI)實驗結果顯示,尼龍6基材之LOI為25,尼龍6/無鹵耐燃劑/無機物奈米複合材料之LOI為35.2,其中耐燃劑(FA)含量30 wt%及黏土為3 phr,發現添加無鹵耐燃劑及黏土均會增加LOI。在尼龍6,6/無鹵耐燃劑/無機物複材系統中,LOI是亦隨著無鹵耐燃劑和無機物含量增加而提升;其中添加3 phr之黏土(Clay)或滑石粉(Talc)於複材中,其LOI均為30.2;而添加3 phr之雲母(Mica),其LOI為28.7,因此,使用Clay或Talc,其複材之LOI最高,防火效果也較佳。在熱重損失(TGA)分析結果亦顯示添加無鹵耐燃劑和無機物會延緩尼龍6,6基材之燃燒時間。將玻纖添加到尼龍6,6/無鹵耐燃劑/無機物複材中,LOI隨著玻纖含量增加而提升。其中添加30 wt%之玻纖於尼龍6,6/無鹵耐燃劑(FA)/滑石粉(3 phr)複材中,LOI為32.2。而將Glass Fiber(G)添加於尼龍6,6/無鹵耐燃劑(FA)/黏土(3 phr)複材中,LOI為34.8。因此增加玻纖含量,複材之LOI也隨之提高。由場發射式電子顯微鏡(FESEM)斷裂面型態分析,在N6,6/G複材之斷裂面有玻纖存在,玻纖從基材中被拔出。而在N6,6/FA15/T3/G複材觀察到N6,6複材之玻纖上表面粗糙,所以耐燃劑和滑石粉會改善尼龍6,6和玻纖之間的界面黏著性。由動態機械(DMA)分析發現,添加無鹵耐燃劑FA(15 wt%)和Talc(3 phr)於尼龍6,6基材中,於40 ℃下之儲存模數為1.65 × 109 Pa,與尼龍6,6相比提升了16 %。在N6,6/FA15/T3複材中添加玻纖(30 wt%),於40 ℃下之儲存模數為2.30 × 109 Pa,與尼龍6,6相比提升了62.0 %。
Abstract In this study, polyamide/halogen-free flame retardant/inorganic materials nanocomposites were prepared via melt blending to investigate the flame retarded effect of nanocomposites. The additive of halogen-free flame retardant in the polyamide matrix can improve its flame retarded property. Various inorganic fillers, such as montmorillonite, talc, mica, glass fiber, are added into the polyamide matrix for the purpose of reduction of content of halogen-free flame retardant which is more expensive than the inorganic filler. Therefore, adoping inorganic filler into halogen-free flame retardant can reduce the cost. In the result of limiting oxygen index (LOI) of polyamide nanocomposites, the addition of halogen-free flame retardant into polyamide 6 matrix increases its LOI, and employing montmorillonite in the polyamide 6/halogen-free flame retardant composites further increases the LOI. For polyamide 66/halogen-free flame retardant/inorganic nanocomposites, the LOI increases with the increase of halogen-free flame retardant and inorganic fillers. For the polyamide 66/halogen-free flame retardant/inorganic nanocomposites with 3 phr of clay or talc, their LOI are both 30.2. The LOI of polyamide 66/halogen-free flame retardant/inorganic nanocomposite with 3 phr is 28.7. TGA results of polyamide 66/halogen-free flame retardant/inorganic nanocomposite shows that the addition of /halogen-free flame retardant and inorganic filler delays the degradation of polyamide 66. Therefore, inorganic filler, either clay or talc, the polyamide 66/halogen-free flame retardant/inorganic nanocomposites show the highest LOI. Furthermore, the glass fiber was melt blended with polyamide 66/halogen-free flame retardant/inorganic nanocomposites, and their LOI increase along with the addition of glass fiber. With the addition of glass fiber at 30 wt % in the polyamide 66 nanocomposites N6,6/FA/T3 and N6,6/FA/C3, their LOI are 32.2 and 34.8, respectively. Therefore, increasing of glass fiber in the polyamide 66 nanocomposites results in the increase of LOI. The glass fibers were found to be pulled out from polyamide 66 matrix as observed in the fracture surface of field emission scaning electron micscope. In the FESEM image of fracture surface, the surface of glass fiber is rough, because the halogen-free flame retardant and talc improve the adhesion between polyamide 66 and glass fiber. In the result of dynamic mechanical analysis, the storage modulus at 40℃ increases from 1.42 × 109 to 1.65 × 109, an increase of 16 %, for addition of 15 wt % of halogen-free flame retardant and 3 phr talc in polyamide 66. Further, for N66/FA15/T3 systems, the storage modulus at 40℃ increases from 1.42 × 109 to 2.30 × 109, an increase of 62.0 %, for the addition of 30 wt % of glass fiber in polyamide 66.
URI: http://hdl.handle.net/11455/3720
其他識別: U0005-0602201016014900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602201016014900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.