Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3725
標題: 二次非線性規則樹枝狀高分子合成及光電特性之研究
Design and Synthesis of NLO Dendron-Containing Materials, and Their Electro-Optical Properties
作者: 陳永忠
Chen, Yung-Chung
關鍵字: nonlinear optical materials
二次非線性光學材料
dendrimer
electro-optical coefficients
樹枝狀分子
光電係數
出版社: 化學工程學系所
引用: 1. Zyss, J.; Chemla, D. S. Nonlinear Optical Properties of Organic Molecules and Crystals 1987, I, p 2-1. 2. Cho, M. J.; Choi, D. H.; Sullivan, P. A.; Akelaitis, A. J. P.; Dalton, L. R. Prog. Polym. Sci. 2008, 33, 1013. 3. Marder, S. R.; Perry, J. W. Science 1994, 263, 1706. 4. 鄭如忠、陳永忠 “規則樹枝狀高分子之分子設計及其在光電變頻上之研究(2/2)”, 工程科技通訊-95年度‧第八十九期‧十二月刊 P.004-009. 5. Normandin, R.; Stegeman, G. I. Appl. Phys. Lett. 1980, 36, 253. 6. http://www.bccresearch.com/report/SMC019C.html. 7. Burland, D. M.; Miller, R. D.; Walsh, C. A. Chem. Rev. 1994, 94, 31. 8. Chang, C. C.; Chen, C. P.; Chou, C. C.; Kuo, W. J.; Jeng, R. J. J. Macro. Sci. Polym. Rev. 2005, 45, 125. 9. Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct. Mater. 2002, 12, 565. 10. Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817. 11. Nahata, A.; Shan, J.; Yardley, J. T. Wu, C. J. Opt. Soc. Am. B 1993, 10, 1553. 12. Dalton, L. R.; Sullivan, P. A.; Bale, D. H.; Olbricht, B. C. Solid-State Electron. 2007, 51, 1263. 13. Chao, T. Y.; Chang, H. L.; Su, W. C. ; Wu, J. Y. ; Jeng, R. J. Dyes and Pigments 2008, 77, 515. 14. Kajzar, F.; Lee, K. S.; Jen, A. K. Y. Adv. Polym. Sci. 2003, 161, 1. 15. Meredith, G. R.; VanDusen, J. G.; Williams, D. J. Macromolecules 1982, 15, 1385. 16. Shi, W.; Fang, C.; Pan, Q.; Qin, Z.; Gu, Q.; Xu, D.; Yu, J. J. Phys. D: Appl. Phys. 2002, 35, 1404. 17. Wu, J. W.; Valley, J. F.; Ermer, S.; Binkley, E. S.; Kenney, J. T.; Lipscomb, G. F.; Lytel, R. Appl. Phys. Lett. 1991, 58, 225. 18. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. Macromolecules 2001, 34, 2373. 19. Shi, Y. Q.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119. 20. Yesodha, S. K.; Sadashiva Pillai, C. K.; Tsutsum, N. Prog. Polym. Sci. 2004, 29, 45. 21. Becker, M. W.; Sapochak, L. S.; Ghosen, R.; Xu, C.; Dalton, L. R. Chem. Mater. 1994, 6, 104. 22. Chen, T. A.; Jen, A. K. Y.; Cai, Y. J. Am. Chem. Soc. 1995, 117, 7295. 23. Tsutsumi, N.; Morishima, M.; Sakai, W. Macromolecules 1998, 31, 7764. 24. Yoon, K. R.; Byun, N. M.; Lee, H. Synthetic Metals 2007, 157, 603. 25. Lee, J. Y.; Baek, C. S.; Park, E. J. Europe. Polym. J. 2005, 41, 2107. 26. Tasi, H. C.; Kuo, W. J.; Hsiue, G. H. Macromol. Rapid Commun. 2005, 26, 986. 27. Zyss. J.; Oudar, J. L. Phys. Rev. A. 1982, 26, 2016. 28. Gacal, B.; Clanga, L.; Agag, T.; Takeichi, T.; Yagci, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2774. 29. Seo, D. K.; Lim, H. S.; Lee, J. Y.; Kim, W. G. Mol. Cryst. Liq. Cryst. 2006, 445, 323. 30. Marturunkaku, S.; Chen, J. I.; Li, L.; Jeng, R. J. Kumar, J.; Tripathy, S. K. Chem. Mater. 1993, 5, 592. 31. Cui, Y.; Qian, G.; Chen, L.; Wang, Z.; Wang, M. J. Sol-Gel Sci. Technol. 2008, 47, 252. 32. Park, C. K.; Zieba, J.; Zhao, C. F.; Swedek, B.; Wijekoon, W. M. K. P.; Prasad, P. N. Macromolecules 1995, 28, 3713. 33. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174. 34. Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R. Jen, A. K. Y. J. Am. Chem. Soc. 2001, 123, 986. 35. Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183. 36. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819. 37. Frechet, J. M. J. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3713. 38. Tomalia, D. A. Mater. Today 2005, 8, 34. 39. De Gennes, P. G.; Hervet, H. J. Phys. Lett. 1983, 44, 351. 40. Jikei, M.; Kakimoto, M. Prog. Polym. Sci. 2001, 26, 1233. 41. Buhleier, E.; Wehner, W.; Vogtle, F. Synthesis 1978, 155. 42.Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117. 43. Emran, S. K.; Newkome, G. R.; Weis, C. D.; Harmon, J. P. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 2038. 44. Newkome, G. R.; Shreiner, C. D. Polymer 2008, 49, 1. 45. Esfand, R.; Tomalia, D. A. Drug Disc. Today 2001, 6, 427. 46. Sevnson, S.; Tomalia, D. A. Adv. Drug Deliv. Rev. 2005, 57, 2106. 47. Stiriba, S. E.; Frey, H.; Haag, R. Angew. Chem. Int. Ed. 2002, 41, 1329. 48. Percec, V.; Cho, W. D.; Ungar, G.; Yeardley, D. J. P. Angew. Chem. Int. Ed. 2000, 39, 1597. 49. Gillies, E. R.; Frechet, J. M. J. Drug Disc. Today 2005, 10, 35. 50. Precec, V.; Peterca, M.; Sienkowasks, M. J.; Llies, M. A.; Aqad, E.; Smidrkal, J. Heiney, P. A. J. Am. Chem. Soc. 2006, 128, 3324. 51. Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J. J. Am. Chem. Soc. 2005, 127, 7594. 52. Korkosz, R. J.; Gilbertson, J. D.; Prasifka, K. S.; Chandler, B. D. Cat. Today 2007, 122, 370. 53. Vogtle, F.; Gestermann, S.; Hesse, R.; Schwierz, H. Windisch, B. Prog. Polym. Sci. 2000, 25, 987. 54. Lorenz, K.; Holter, D.; Stiihn, B.; Miilhaupt, R.; Frey, H. Adv. Mater. 1996, 8, 414. 55. Jiang, J.; Liu, H. W.; Zhao, Y. L.; Chen. C. F.; Xi, F. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1167. 56. Dinakaran, K.; Hsiao, S. M.; Chou, C. H.; Shu, S. L.; Wei, K. H. Macromolecules 2005, 38, 10429. 57. Satoh, N.; Nakashima, T.; Yamamoto, K. J. Am. Chem. Soc. 2005, 127, 13030. 58. Ma, C. Q.; Fonrodona, M.; Schikora, M. C.; Wienk, M. M.; Janssen, R. J.; Bauerle, P. Adv. Funct. Mater. 2008, 18, 3323. 59.Robinson, B. H.; Dalton, L. R. J. Phys. Chem. A 2000, 104 4785. 60. Li, Z.; Zeng, Q.; Yu, G.; Li, Zhen.; Ye, C.; Liu, Y.; Qin, J. Macromol. Rapid Commun. 2008, 29, 136. 61. Bai, Y. ; Song, N. ; Gao, J. P. ; Sun, X. ; Wang, X.; Yu, G.; Wang, Z. Y. J. Am. Chem. Soc. 2005, 127, 2060. 62. Luo, J. ; Haller, M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y.; Chen, B.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y. J. Phys. Chem. B 2004, 108, 8523. 63. Do, J. Y.; Park, S. K.; Ju, J. J.; Park, S.; Lee, M. H. Macromol. Chem. Phys. 2003, 204, 410. 64. Tian, Y.; Chen, C. Y.; Haller, M.; Tucker, N. M.; Ka, J. W.; Luo, J.; Huang, S.; Jen, A. K. Y. Macromolecules 2007, 40, 97. 65. Kim, T. D.; Luo J.; Cheng, Y. J.; Shi, Z.; Hau, S.; Jang, S. H.; Zhou, X. H.; Tian, Y.; Polishaka, B.; Huang, S.; Ma, H.; Daltons, L. R.; Jen, A. K. Y. J. Phys. Chem. C 2008, 112, 8091. 66. Dalton, L. R.; Robinson, B. H.; Jen, A. K. Y. ; Steier, W. H.; Nielsen, R. Optic. Mater. 2002, 21, 19. 67. Do, J. Y.; Ju, J. J. Macromol. Chem. Phys. 2005, 206, 1326. 68. Cho, M. J.; Lee, S. K.; Jin, J. I.; Choi, D. H.; Dalton, L. R. Thin Solid Films 2006, 515, 2303. 69. Cho, M. J.; Lee, S. K.; Choi, D. H.; Jin, J. I. Dyes and Pigments 2008, 77, 335. 70. Bruchmann, B. Macromol. Mater. Eng. 2007, 292, 981. 71. Spindler, R.; Frechet, J. M. J. J. Chem. Soc. Perkin Trans. I 1993, 913. 72. Bruchmann, B.; Wingerter, F.; Graf, H.; Wolff, S. US Patent 1995, 5981684. 73. Reemers, S.; Mourran, A.; Keul, H.; Moller, M. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1372. 74. Taylor, R. T.; Puapaiboon, U. Tetrahedron Lett. 1998, 39, 8005. 75. Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macromolecules 2002, 35, 6232. 76. Feast, W. J.; Rannard, S. P.; Stoddart, A. Polyme. Mater. Sci. Eng. 2001, 84, 701. 77. 陳志平,國立中興大學化工系博士論文, 2004。 78. Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J. Su, W. C.; Jeng, R. J. J. Appli. Polym. Sci. 2007, 103, 3591. 79. Kuo, M. J.; Tung, Y. C.; Yeh, C. L.; Chang, H. Y.; Jeng, R. J.; Dai, S. A. Macromolecules 2008, 10.1021/ma801889x. 80. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 682. 81. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J. Polymer 2005, 46, 11849. 82. Dai, S. A.; Chen, C. P.; Lin, C. C.; Chang, C. C.; Wu, T. M.; Su, W. C.; Chang, H. L.; Jeng, R. J. Macromol. Mater. Eng. 2006, 291, 395. 83. Tasi, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. 84. Jeng, R. J.; Chen, Y. M.; Jain, A. K.; Tripathy, S. K.; Kumar, J. Opt. Commun. 1992, 89, 212. 85. Jeng, R. J.; Chang, C. C.; Chen, C. P.; Chen, C. T.; Su, W. C. Polymer 2003, 44, 143. 86. Chen, C. P.; Huang, G. S.; Jeng, R. J.; Chou, C. C.; Su, W. C.; Chang, H. L. Polym. Adv. Technol. 2004, 15, 587. 87. Kuo, W. J.; Chang, M. C.; Juang, T. Y.; Chen, C. P.; Chen, C. T.; Chang, H. L.; Jeng, R. J. Polym. Adv. Technol. 2005, 16, 515. 88. Chen, L.; Qian, G.; Gui, Y.; Jin, X.; Wang, Z.; Wang, M. J. Phys. Chem. B 2006, 110, 19176. 89. Chen, L.; Qian, G.; Jin, X.; Gui, Y.; Gao, J.; Wang, Z.; Wang, M. J. Phys. Chem. B 2007, 111, 3115. 90. Chang, P. H.; Tsai, H. C.; Chen, Y. R.; Chen, J. Y.; Hsiue, G. H. Langmuir 2008, 24, 11921. 91. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. 92. Ray, S. S.; Okamoto, K.; Okamoto, M. Macromolecules 2003, 36, 2355. 93. Lin, J. J.; Cheng, I. J.; Wang, R. C.; Lee, R. J. Macromolecules 2001, 34, 8832. 94. Chou, C. C.; Chang, Y. C. ; Chiang, M. L. ; Lin, J. J. Macromolecules 2004, 37, 473. 95. Chou, C. C. ; Lin, J. J. Macromolecules 2005, 38, 230. 96. Choy, J. H. ; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem. Int. Ed. 2000, 39, 4041. 97. Costa, A. S.; Imae, T. Langmuir 2004, 20, 8865. 98. Acosta, E. J.; Deng, Y.; White, G. N.; Dixon, J. B.; McInnes, K. J.; Senseman, S. A.; Frantzen, A. S.; Simanek, F. E. Chem. Mater. 2003, 15, 2903. 99. Juang, T. Y.; Tasi, C. C.; Wu, T. M.; Dai, S. A.; Chen, C. P.; Lin, J. J.; Liu, Y. L.; Jeng, R. J. Nanotechnolohy 2007, 18, 205606. 100. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832. 101. Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187. 102. Beall, G. W.; Goss, M. Applied Clay Sci. 2004, 27, 179. 103. Heinz, H.; Vaia, R. A.; Krishnamoorti, R.; Farmer, B. L. Chem. Mater. 2007, 19, 59. 104.Osman, M. A.; Ploetze, M.; Skrabal, P. J. Phys. Chem. B 2004, 108, 2580. 105. Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492. 106. Wang, W. J.; Chin, W. K.; Wang, W. J. J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 1690. 107. Dudkina, M. M.; Tenkovtsev, A. V.; Pospiech, D.; Jehnichen, D.; Haubler, L.; Leuteritz, A. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 2493. 108. Wang, Y.; Wang, X.; Guo, Y.; Cui, Z.; Lin, Q.; Yu, W.; Liu, L.; Xu, L.; Zhang, D.; Yang, B. Langmuir 2004, 20, 8952. 109. Wang, Y.; Wang, C.; Wang, X.; Guo, Y.; Xie, B.; Cui, Z.; Liu, L.; Xu, L.; Zhang, D.; Yang, B. Chem. Mater. 2005, 17, 1265. 110. Facchetti, A.; Beverina, L.; Van Der Boom, M. E.; Dutta, P.; Evmenenko, G.; Shukla, A. D.; Stern, C. E.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 2142. 111. Kang, H.; Evmenenko, G.; Dutta, P.; Clays, K.; Song, K.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 6194. 112. Min, Y. H.; Lee, K. S.; Yoon, C. S.; Do, L. M. J. Mater. Chem. 1998, 8, 1225. 113. Chang, H. L.; Lin, H. L.; Wang, Y. C.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polymer 2007, 48, 2046. 114. Kim, J. H.; Jang, J.; Zin, W. C. Langmuir 2000, 16, 4064. 115. Pham, J. Q.; Green, P. F. Macromolecules 2003, 36, 1665. 116. Teng, C. C.; Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. 117. Jeng, R. J.; Hsiue, G. H.; Chen, J. I.; Marturunkakul, S.; Li, L.; Jiang, X. L. J. Appl. Polym. Sci. 1995, 55, 209. 118. Shi, W.; Fang, C. S.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Yu, J. Z. Optics and Lasers in Engineering 2000, 33, 21. 119.陳衍甫,國立中興大學化工系碩士論文, 2002。 120.Uppuluri, S.; Morrison, F. A.; Dvornic, P. R. Macromolecules 2000, 33, 2551. 121. Bertolucci, P. R. H.; Harmon, J. P.; Biagtan, E.; Schueneman, G.; Goldberg, E. Polym. Eng. Sci. 1998, 38, 699. 122. Ma, H.; Jen, A. K. Y. Adv. Mater. 2001, 13, 1201. 123. Do, J. Y.; Park, S. K.; Ju, J. J.; Park, S.; Lee, M. H. Polym. Adv. Technol. 2005, 16, 221. 124. Clays, K.; Coe, B. J. Chem. Mater. 2003, 15, 642. 125. Lin, H. L.; Chao, T. Y.; Shih, Y. F.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polym. Adv. Technol. 2008, 19, 984. 126. Cui, Y.; Qian, G.; Chen, L.; Wang, Z.; Wang, M. Macromol. Rapid Commun. 2007, 28, 2019. 127. Inoue, K. Prog. Polym. Sci. 2000, 25, 453. 128. Frechet, J. M. J. Science 1994, 263, 1710. 129. Chang, Y. ; Chen, C. Y. Chen, W. C. J. Polym Sci Part B: Polym. Phys. 2004, 42, 446. 130. Wei, M. H.; Lee, C. H.; Chang, C. C.; Chen, W. C. J. Appl. Polym. Sci. 2005, 98, 1224. 131. Shi, W.; Fang, C. S.; Sui, Y.; Yin, J.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Hu, H.; Yu, J. Z. Opt. Commun. 2000, 183, 299. 132. Shi, W.; Fang, C. S.; Sui, Y.; Yin, J.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Hu, H.; Yu, J. Z. Solid State Commun. 2000, 116, 67. 133. Hoang, M. H.; Kim, M. Y.; Cho, M. J.; Kim, K. H.; Kim, K. N.; Jin, J.; Choi, D. H. J. Polym Sci Part A: Polym. Chem. 2008, 46, 5064. 134. Sui, Y.; Yu, X.; Yin, J.; Zhong, X.; Li, Q.; Chen, Y.; Zhu, Z.; Wang, Z. Opt. Commun. 2001, 191, 439. 135. Park, S. K.; Do, J. Y.; Ju, J. J.; Park, S.; Lee, M. H. React. Funct. Polym. 2004, 58, 93. 136. Shi, W.; Xu, Z.; Fang, C.; Pan, Q.; Gu, Q.; Xu, D.; Wei, H.; Yu, J. Optics and Lasers in Engineering 1999, 32, 139. 137. Choi, D. H.; Park. J. H. ; Rhee, T. H. ; Kim, N. ; Lee, S. D. Chem. Mater. 1998, 10, 705. 138. Krishnan, P.; Park, J. S.; Kim, C. S. J. Membr. Sci. 2006, 279, 220. 139. Vaia, R. A.; Sauer, B. B.; Tse, O. K.; Giannelis, E. P. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 59. 140. Noh, M. W.; Lee, D. C. Polym. Bullet. 1999, 42, 619. 141. Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H.; Chen, Z.; Wurthner, F.; Marsal, P.; Beljonne, D. Cornil, J.; Janssen, R. J. J. Am. Chem. Soc. 2006, 128, 649. 142. Liu, J. G.; Li, Z. X.; Wu, J. T.; Zhou, H. W.; Wang. F. S.; Yang. S. Y. J. Polym Sci Part A: Polym. Chem. 2002, 40, 1583. 143. Park, J. C.; Park. D. J.; Son, K. C.; Kim, Y. B. Mol. Cryst. Liq. Cryst. 2007, 479, 191. 144. Datta, A.; Pati, S. K. J. Molecular Structure: THEOCHEM 2005, 756, 97. 145. Du, X.; Wang, Y. J. Phys. Chem. B. 2007, 111, 2347. 146. Alexandre, M.; Dubois, P. Mater. Sci. Eng. R. 2000, 28, 1. 147. Okano, K.; Matsuura, N.; Kobayashi, S. Jpn. J. Appl. Phys. 1982, 21, 109. 148. Yesodha, S. K.; Pillai, C. K. S. ; Tsutsumi, N. Prog. Polym. Sci. 2004, 29, 45. 149. Liu, Z.; Yu, F.; Zhang, Q.; Zeng, Y.; Wang, Y. Europe. Polym. J. 2008, 44, 2718. 150. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y. J. Am. Chem. Soc. 2004, 126, 15180. 151. Datta, A.; Pati, S. K. J. Phys. Chem. A. 2004, 108, 320. 152. Desiraju, G. R.; Steiner, T. Angew. Chem. Int. Ed. Eng. 2002, 41, 48. 153. Ledouxa, I.; Zyssa, J.; Barnib, E.; Barolob, C.; Diulgheroffb, N.; Quagliottob, P.; Viscardi, G. Synthetic Metals 2000, 115, 213. 154. Briers, D.; Picard, I.; Verbiest, T.; Persoons, A.; Samyn, C. Polymer 2004, 45, 19. 155. Briers, D.; Koeckelberghs, G.; Picard, I.; Verbiest, T.; Persoons, A.; Samyn, C. Macromol. Rapid Commun. 2003, 24, 841. 156. Briers, D.; Cremer, L. D.; Koeckelberghs, G.; Foerier, S.; Verbiest, T.; Samyn, C. Macromol. Rapid Commun. 2007, 28, 942. 157. Yang, C. P.; Chen, Y. C. J. Appl. Polym. Sci. 2005, 96, 2399. 158. Seo, D. S.; Muroi, K.; Kobayashi, S. Mol. Crys. Liq. Tech., Sect. A 1992, 213, 223.
摘要: 二次非線性光學高分子材料具有較大的非線性光學係數、高應答速度、低雷射損害及高分子質輕、易加工成膜等優良特性,可應用在光電元件上,例如二倍頻裝置(frequency doubler)及光電調制器(electro-optic modulator)等元件上。其中,高的光學係數與長時間熱穩定性為二次非線性高分子材料之兩大需求。本研究利用具有反應選擇性之構築單元4-isocyanat-4’(3,3-dimethyl-2,4-dioxo-azetidino)diphenyl-methane (IDD)以收斂方法製備一末端具有發色團基Disperse red 1 (DR1)之polyureathane/malonamide dendrons (G0.5-G3)。研究內容分成四個部分:首先利用IDD中之-NCO官能基與DR1中之-OH官能基進行加成反應產生urethane鍵結,再配合IDD中之azetidine-2,4-dione官能基與一級胺開環反應形成malonamide鍵結,反覆進行加成與開環步驟可得高代數之樹枝狀分子,將各代數之樹枝狀分子進行結構分析並與高玻璃轉移溫度之聚亞醯胺混摻形成一賓主型二次非線性光學材料,含有樹枝狀結構之二次非線性光學材料隨著代數成長具明顯之阻隔效應(site-isolation effect),而具有較高的光電係數值。然後進行提升熱穩定性、光電性質與自組裝等應用。 於熱穩定方面,由於polyureathane/malonamide dendrons因結構而導致熱穩定不如預期,為了使其材料具有更佳應用之價值,導入了無機矽氧烷結構,經由溶膠-凝膠反應形成一含有樹枝狀結構之網狀交鏈二次非線性光學材料。實驗中,利用具有azetidine-2,4-dione官能基之樹枝狀分子(G0.5、G1.5、G2.5)與帶有一級胺結構之矽氧烷單體進行開環反應形成一端具有樹枝狀結構一端具有可進行水解縮合之樹枝狀矽氧烷發色團基(SiG0.5、SiG1.5、SiG2.5),爾後與phenyltriethoxysilane (PTEOS)混合後進行極化與熟化之程序得到一有機-無機二次非線性光學材料。由於材料具有(1)阻隔效應之樹枝狀分子; (2)無機網狀結構與(3)分子間之氫鍵作用力,因此,可得到一均勻且同時具有良好之熱穩定性及光學係數之薄膜。 於光電性質方面,由於polyureathane/malonamide dendrons必須與聚亞醯胺混摻方能得到一光學薄膜,此稀釋作用使得發色團基之含量無法提升,本實驗將利用具有azetidine-2,4-dione官能基之樹枝狀分子(G0.5、G1.5、G2.5)與帶有一級胺結構之三胺單體合成一星狀樹枝狀高分子(TrisG0.5、TrisG1.5、TrisG2.5),由於分子量之提升免去了聚亞醯胺高分子之混摻,而可提升整體之發色團基含量。同時,近似球型結構可增加極化效率,提升光電係數值。 最後,則為樹枝狀分子與無機蒙脫土montmorillonite (MMT)層版之改質,及其自組裝行為應用於二次非線性光學材料中。蒙脫土材料為一無機天然層狀黏土,為親水性之材料,研究中採用具有二級胺結構之樹枝狀分子(G1、G2、G3)為一介面活性劑,以離子交換方式將樹枝狀分子進入蒙脫土層版形成一系列之有機黏土,插層型態層間距分別為50 Å、126 Å及80 Å。將有機黏土混摻於聚亞醯胺所形成之奈米複合材料具備自組裝排列之分子構型,可利用此製備方式來達到非中心對之排列,不經電場極化即可具有光電性質,其應用層面更為廣泛。
Second-order nonlinear optical (NLO) materials are of great interest because of their optical applications such as electro-optical (EO) switches, frequency doubler and ultrafast devices for information processing, storage and computing. In order to be applicable, large EO coefficients (r33) must be accompanied by excellent temporal stability while in operation at elevated temperatures. In this work, a bifunctional compound, 4-isocyanato-4'(3,3-dimethyl-2,4-dioxo-acetidino)-diphenylmethane (IDD) was used as a building block to synthesize a series of novel NLO chromophore-containing dendrons including generation 0.5 (G0.5) to generation 3 (G3). First, the isocyanate group of IDD was reacted with the hydroxy-containing Disperse red 1 (DR1) to form a urethane-linked G0.5. Subsequently, diethylenetriamine (DETA) was introduced to react with the remaining azetidine-2,4-dione group. The azetidine-2,4-dione group would react with a primary amine, but not a secondary one. The secondary amine could further react with IDD to afford the next generation of dendron. After sequential and alternative incorporations of the IDD and DETA onto the growing dendrons, a series of chromophore-containing dendrons ranged from G0.5 to G3 were obtained. Subsequently, several guest-host systems were prepared by blending these dendrons with a high glass transition temperature polyimide, respectively. The site-isolation effects derived from high generation dendrons indeed play an important role for enhancing the EO coefficients. The guest-host polymeric systems with higher generations of dendrons possess excellent site-isolation effect and consequently exhibit larger EO coefficients. However, they show poor temporal stability at elevated temperatures. In this part, we synthesized the materials starting with three chromophore-containing dendrons (G0.5, G1.5 and G2.5) bearing azetidine-2,4-dione functional groups. To these dendrons, we added 3-aminopropyltriethoxysilane to form the corresponding dendronized alkoxysilane dyes (SiG0.5, SiG1.5 and SiG2.5). Followed by blending phenyltriethoxysilane (PTEOS) with respective SiG0.5, SiG1.5 and SiG2.5 to obtain a series of dye-attached organic-inorganic hybrid NLO materials was obtained via the sol-gel reaction. Due to the materials with the following characteristics: (1) dendrons that show site-isolation effect; (2) silica network structures that exhibit thermal stability; and (3) a network consisting of hydrogen bonding-rich dendrons that allow strong intermolecular interactions with the remaining silanol groups of silica network, thin films with uniform morphology could be obtained from these dye-attached organic-inorganic systems. In addition, relatively larger optical nonlinearity, low optical losses and excellent temporal stability at 100 oC were also achieved. Due to the dilute issue for the guest-host polymeric systems and shape theory in EO activity, we used the three chromophore-containing dendrons (G0.5, G1.5, G2.5) with the specified functional group “azetidine-2,4-dione” as starting materials to proceed addition reaction with trifunctional primary amine monomer. A series of star-shape or sphere-shape like high dye content dendrimers (TrisG0.5, TrisG1.5, TrisG2.5) was obtained. Due to this specific structures, large EO coefficients could be obtained. Finally, chromophore-containing dendrons (G1, G2, G3) were utilized to intercalate layered silicates, resulting in a large d-spacing ranging from 50 to 126 Å. After blending the organoclays with a polyimide, the steric bulkiness of dendrons and the interaction between dendron and polyimide resulted in ordered morphology. This self-assembled arrangement brought about the electro-optical coefficients of 4-6 pm/V for these relatively low chromophore-containing organic/inorganic nanocomposites without resorting to poling. Moreover, the dendrons in layered silicates were capable of undergoing a critical conformation change into an ordered structure, indicating by the drastic changes of interlayer distances at certain packing densities. Furthermore, the addition of a polyimide capable of interaction-induced orientation is found to exert an enhancing effect on the degree of the non-centrosymmetric alignment.
URI: http://hdl.handle.net/11455/3725
其他識別: U0005-0807200915020700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0807200915020700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.