Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3726
標題: 環氧樹脂於黏土層間之開環聚合反應及其複合材料自我排列型態
Epoxy Ring-Opening Polymerization in Clay Confinement, Nanocomposites and the Self-Assembling Morphologies
作者: 詹英楠
Chan, Ying-Nan
關鍵字: Epoxy
環氧樹脂
Polymerization
Clay
Nanocomposites
Self-Assembling
聚合
黏土
奈米複合材料
自我排列
出版社: 化學工程學系所
引用: 1. E. P. Giannelis, Adv. Mater. 1996, 8, 29-35. 2. L. A. Utracki, M. Sepehr, E. Boccaleri, Polym. Adv. Technol. 2007, 18, 1-37. 3. M. Alexandre, P. Dubois, Mater. Sci. Eng. 2000, 28, 1-63. 4. A. Okada, A. Usuki, Mater. Sci. Eng. C 1995, 3, 109-115. 5. A. Okada, A. Usuki, Macromol. Mater. Eng. 2006, 291, 1449-1476. 6. D. Porter, E. Metcalfe, M. J. K. Thomas, Fire Mater. 2000, 24, 45-52. 7. Z. Wang, T. J. Pinnavaia, Chem. Mater. 1998, 10, 1820-1826. 8. J. W. Gilman, Appl. Clay Sci. 1999, 15, 31-49. 9. B. K. G. Theng, The Chemistry of Clay-Organic Reactions, 2nd ed., John Wiley & Sons, New York, 1974. 10. H. Van Olphen, An Introduction to Clay Colloid Chemistry, 2nd ed., John Wiley & Sons, New York, 1977. 11. B. K. G. Theng, Formation and Properties of Clay-Polymer Complexes, Elsevier, New York, 1979. 12. C. S. Triantafillidis, P. C. LeBaron, T. J. Pinnavaia, Chem. Mater. 2002, 14, 4088-4095. 13. C. D. Muzny, B. D. Butler, H. J. M. Hanley, F. Tsvetkov, D. G. Peiffer, Mater. Lett. 1996, 28, 379-384. 14. M. Bohning, H. Goering, A. Fritz, K. W. Brzezinka, G. Turky, A. Scholnhals, B. Schartel, Macromolecules 2005, 38, 2764-2774. 15. D. R. Robello, N. Yamaguchi; T. Blanton, C. Barnes, J. Am. Chem. Soc. 2004, 126, 8118-8119. 16. Y. I. Tien, K. H. Wei, J. Appl. Polym. Sci. 2002, 86, 1741-1748. 17. B. Lepoittevin, N. Pantoustier, M. Alexandre, C. Calberg, R. Jerome, P. Dubois, J. Mater. Chem. 2002, 12, 3528-3532. 18. M. Z. Myskova, J. Zelenka, V. Spacek, F. Socha, Macromol. Symp. 2003, 200, 291-296. 19. M. S. Wang, T. J. Pinnavaia, Chem. Mater. 1994, 6, 468-474. 20. T. Lan, P. D. Kaviratna, T. J. Pinnavaia, J. Phys. Chem. Sol. 1996, 57, 1005-1010. 21. S. S. Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539-1641. 22. P. C. LeBaron, Z. Wang, T. J. Pinnavaia, Appl. Clay Sci. 1999, 15, 11-29. 23. E. P. Giannelis, Appl. Organometal. Chem. 1998, 12, 675-680. 24. M. Zanetti, S. Lomakin, G. Camino, Macromol. Mater. Eng. 2000, 279, 1-9. 25. H. Ishida, S. Campbell, J. Blackwell, Chem. Mater. 2000, 12, 1260-1267. 26. J. H. Choy, S. Y. Kwak, Y. J. Jeong, J. S. Park, Angew. Chem. Int. Ed. 2000, 39, 4041-4045. 27. Y. Yi, Y. Wang, H. Liu, Carbohyd. Polym. 2003, 53, 425-430. 28. G. Fu, P. S. Vary, C. T. Lin, J. Phys. Chem. B 2005, 109, 8889-8898. 29. L. Gu, T. Elkin, X. Jiang, H. Li, Y. Lin, L. Qu, T. R. J. Tzeng, R. Joseph Y. P. Sun, Chem. Commun. 2005, 874-876. 30. R. A. Horch, T. D. Golden, N. A. D''Souza, L. Riester, Chem. Mater. 2002, 14, 3531-3538. 31. T. Cseri, S. Bekassy, F. Figueras, S. Rizner, J. Mol. Catal. A: Chem. 1995, 98, 101-107. 32. T. J. Pinnavaia, Science 1983, 220, 365-371. 33. A. N. Ajjou, D. Harouna,; C. Detellier, H. Alper, J. Mol. Catal. A: Chem. 1997, 126, 55-60. 34. R. Celis, M. C. Hermosin, M. J. Carrizosa, J. Cornejo, J. Agric. Food Chem. 2002, 50, 2324-2330. 35. Z. Rawajfih, N. Nsour, J. Col. Inter. Sci. 2006, 298, 39-49. 36. Z. Kiraly, B. Veisz, A. Mastalir, G. Kofarago, Langmuir 2001, 17, 5381-5387. 37. A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto, Nano Lett. 2001, 1, 271-272. 38. D. L. Sparks, Environmental Soil Chemistry, John Wiley & Sons, Ltd., 2003. 39. H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu, Macromol. Rapid Commun. 2002, 23, 44-48. 40. V. Rives, M. A. Ulibarri, Coord. Chem. Rev. 1999, 181, 61-120. 41. Rives, V. Mater. Chem. Phys. 2002, 75, 19-25. 42. A. I. Khan, D. O'Hare, J. Mater. Chem. 2002, 12, 3191-3198. 43. S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, J. Solid State Chem. 2001, 162, 52-62. 44. N. Iyi, K. Kurashima, T. Fujita, Chem. Mater. 2002, 14, 583-589. 45. M. Meyn, K. Beneke, G. Lagaly, Inorg. Chem. 1990, 29, 5201-5207. 46. C. C. Chou, M. L. Chiang, J. J. Lin, Macromol. Rapid Commun. 2005, 26, 1841−1845. 47. F. A. Bottino, E. Fabbri, I. L. Fragala, G. Malandrino, A. Orestano, F. Pilati, A. Pollicino, Macromol. Rapid Commun. 2003, 24, 1079-1084. 48. J. J. Lin, Y. M. Chen, Langmuir 2004, 20, 4261−4264. 49. F. L. Beyer, N. C. B. Tan, A. Dasgupta, M. E. Galvin, Chem. Mater. 2002, 14, 2983-2988. 50. Y. H. Ha, Y. Kwon, T. Breiner, E. P. Chan, T. Tzianetopoulou, R. E. Cohen, M. C. Boyce, E. L. Thomas, Macromolecules 2005, 38, 5170-5179. 51. M. Kurian, A. Dasgupta, M. E. Galvin, C. R. Ziegler, F. L. Beyer, Macromolecules 2006, 39, 1864-1871. 52. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wan, Z. E. Qi, Polymer 1999, 40, 4407-4414. 53. M. Maiti, A. Bandyopadhyay, A. K. Bhowmick, J. Appl. Polym. Sci. 2006, 99, 1645-1656. 54. S. Subramani, J. Y. Lee, S. W. Choi, J. H. Kim, J. Polym. Sci. B: Polym. Phys. 2007, 45, 2747-2761. 55. A. B. Bourlinos, D. D. Jiang, E. P. Giannelis, Chem. Mater. 2004, 16, 2404-2410. 56. Y. Hotta, M. Taniguchi, K. Inukai, A. Yamagishi, Langmuir 1996, 12, 5195-5201. 57. K. Wang, L. Wang, J. Wu, L. Chen, C. He, Langmuir 2005, 21, 3613-3618. 58. A. Szabo, D. Gournis, M. A. Karakassides, D. Petridis, Chem. Mater. 1998, 10, 639-645. 59. Y. Hotta, K. Inukai, M. Taniguchi, M. Nakata, A. Yamagishi, Langmuir 1997, 13, 6697-6703. 60. H. Y. Byun, M. H. Choi, I. J. Chung, Chem. Mater. 2001, 13, 4221-4226. 61. A. M. Beatty, K. E. Granger, A. E. Simpson, Chem. Eur. J. 2002, 8, 3254-3259. 62. P. Malakul, K. R. Srinivasan, H. Y. Wang, Ind. Eng. Chem. Res. 1998, 37, 4296-4301. 63. Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim,Y. K. Kim, I. J. Chung. Macromolecules 2001, 34, 88978-8985. 64. N. Mahadevaiah, B. Venkataramani, B. S. J. Prakash, Chem. Mater. 2007, 19, 4606-4612. 65. R. A. Vaia, R. K. Teukolsky, E. P. Giannelis, Chem. Mater. 1994, 6, 1017-1022. 66. S. Hotta, D. R. Paul, Polymer 2004, 45, 7639-7654. 67. C. Zeng, L. J. Lee, Macromolecules 2001, 34, 4098-4103. 68. X. Fu, S. Qutubuddin, Polymer 2001, 42, 807-813. 69. X. Fu, S. Qutubuddin, Mater. Lett. 2000, 42, 12-15. 70. Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguchi, T. Aoyama, H. Taguchi, Chem. Mater. 2002, 14, 477-479. 71. J. H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, G. S. Sur, J. Appl. Polym. Sci. 2003, 90, 3208-3214. 72. M. H. Kim, C. Il Park, W. M. Choi, J. W. Lee, J. G. Lim, O. O. Park, J. M. Kim J. Appl. Polym. Sci. 2004 92, 2144-2150. 73. W. L. Ijdo, T. J. Pinnavaia, Chem. Mater. 1999, 11, 3227-3231. 74. P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto, Chem. Mater. 2002, 14, 4654-4661. 75. W. Xie, R. Xie, W. P. Pan, D. Hunter, B. Koene, L. S. Tan, R. Vaia, Chem. Mater. 2002, 14, 4837-4845. 76. D. M. Fox, P. H. Maupin, R. H. Harris Jr., J. W. Gilman, D. V. Eldred, D. Katsoulis, P. C. Trulove, H. C. DeLong, Langmuir 2007, 23, 7707-7714. 77. Z. M. Wang, T. C. Chung, J. W. Gilman, E. Manias, J. Polym. Sci. B: Polym. Phys. 2003, 41, 3173-3187. 78. J. W. Gilman, W. H. Awad, R. D. Davis, J. Shields, R. H. Harris Jr., C. Davis, A. B. Morgan, T. E. Sutto, J. Callahan, P. C. Trulove, H. C. DeLong, Chem. Mater. 2002, 14, 3776-3785. 79. D. Wang, C. A. Wilkie, Polym. Degrad. Stab. 2003, 82, 309-315. 80. H. C. Greenwell, M. J. Harvey, P. Boulet, A. A. Bowden, P. V. Coveney, A. Whiting, Macromolecules 2005, 38, 6189-6200. 81. H. Tateyama, S. Nishimura, K. Tsunematsu, K. Jinnai, Y. Adachi, M. Kimura, Clays and Clay Minerals, 1992, 40, 180-185. 82. T. Kodama, T. Higuchi, T. Shimizu, K. Shimizu, S. Komarneni, W. Hoffbauer, H. Schneider, J. Mater. Chem. 2001, 11, 2072-2077. 83. V. Rives, M. A. Ulibarri, Coord. Chem. Rev. 1999, 181, 61-120. 84. V. Rives, Mater. Chem. Phys. 2002, 75, 19-25. 85. A. I. Khan, D. O'Hare, J. Mater. Chem. 2002, 12, 3191-3198. 86. S. Aisawa, S. Takahashi, W. Ogasawara ,Y. Umetsu , E. Narita, J. Solid State Chem. 2001, 162, 52-62. 87. N. Iyi, K. Kurachima, T. Fujita, Chem. Mater. 2002, 14, 583-589. 88. J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong, J. Portier, J. Am. Chem. Soc. 1999, 121, 1399-1400. 89. F. Leroux, J. P. Besse, Chem. Mater. 2001, 13, 3507-3515. 90. B. Sels, D. D. Vos, M. Buntinx, F. Pierard, A. K. D. Mesmaeker, P. Jacobs, Nature 1999, 400, 855-857. 91. N. T. Whilton, P. J. Vickers, S. Mann, J. Mater. Chem. 1997, 7, 1623-1629. 92. J. J. Lin, T. Y. Juang, Polymer 2004, 45, 7887-7893. 93. E. L. Yeakey, Process for preparing polyoxyalkylene polyamines, US Patent 3,654,370, 1972. 94. Z. Wang, T. J. Pinnavaia, Chem. Mater. 1998, 10, 3769-3771. 95. R. Xu, E. Manias, A. J. Snyder, J. Runt, Macromolecules 2001, 34, 337-339. 96. K. Yano, A. Usuki, A. Okada, J. Polym. Sci., part A: Polym. Chem. 1997, 35, 2289-2294. 97. W. B. Xu, S. P. Bao, P. S. He, J. Appl. Polym. Sci. 2002, 84, 842-849. 98. X. Kornmann, H. Lindberg, L. A. Berglund, Polymer 2001, 42, 1303-1310. 99. J. M. Brown, D. Curliss, R. A. Vaia, Chem. Mater. 2000, 12, 3376-3384. 100. J. J. Lin, I. J. Cheng, R. Wang, R. J. Lee, Macromolecules 2001, 34, 8832-8834. 101. C. C. Chou, F. S. Shieu, J. J. Lin, Macromolecules 2003, 36, 2187-2189. 102. J. J. Lin, I. J. Cheng, C. C. Chu, Polym. J. 2003, 35, 411-416. 103. J. J. Lin, S. F. Lin, J. Colloid Interface Sci. 2003, 258, 155-162. 104. S. Bourbigot, E. Devaux, X. Flambard, Polym. Degrad. Stab. 2002, 75, 397-402. 105. N. Ogata, S. Kawakage, T. Ogihara, Polymer 1997, 38, 5115-5118. 106. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. J. Harris, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, S. H. Philips, Chem. Mater. 2000, 12, 1866-1873. 107. J. Zhu, A. B. Morgan, F. J. Lamelas, C. A. Wilkie, Chem. Mater. 2001, 13, 3774-3780. 108. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Macromolecules 1997, 30, 6333-6338. 109. N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki, J. Appl. Polym. Sci. 1999, 74, 3359-3364. 110. H. B. Hsueh, C.Y. Chen, Polymer 2003, 44, 5275-5283. 111. H. B. Hsueh, C.Y. Chen, Polymer 2003, 44, 1151-1161. 112. R. Krishnamarooti, R. A. Vaia, E. P. Giannelis, Chem. Mater. 1996, 8, 1728-1734. 113. K. Dusek, Epoxy Resins and Composites. New York: Springer-Verlag, 1985. 114. C. A. May, Epoxy Resins, Chemistry and Technology, 2nded. New York: Marcel Dekker, 1988. 115. M. Kobayashi, F. Sanda, T. Endo, Macromolecules 2001, 34, 1134-1136. 116. T. Hino, T. Endo, Macromolecules 2004, 37, 1671-1673. 117. C. C. Chu, J. J. Lin, C. R. Shiu, C. C. Kwan, polym. J. 2005, 37, 239-245. 118. I. N. Jan, T. M. Lee, K. C. Chiou, J. J. Lin, Ind. Eng. Chem. Res. 2005, 44, 2086-2090. 119. J. J. Lin, I. J. Cheng, C. C. Chou, Macromol. Rapid. Commun. 2003, 24, 492-495. 120. F. J. Leroux, Nanosci. Nanotechnol .2006, 6, 303-315. 121. P. Lennon, E. Espuche, H. Sautereau, E. J. Valo, Appl. Polym. Sci. 2000, 77, 857-865. 122. T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, W. D. Zhang, Macromolecules 2004, 37, 7214-7222. 123. K. Wang, L. Chen, J. Wu, M. L. Toh, C. He, A. F. Yee, Macromolecules 2005, 38, 788-800. 124. W. B. Xu, S. P. Bao, P. S. He, J. Appl. Polym. Sci. 2002, 84, 842-849. 125. X. Kornmann, H. Lindberg, L. A. Berglund, Polymer 2001, 42, 1303-1310. 126. F. Leroux, J. P. Besse, Chem. Mater. 2001, 13, 3507-3515. 127. K. G. Bhattacharyya, S. S. Gupta, Adv. Colloid Interfac. 2008, 140, 114-131. 128. C. W. Chiu, W. T. Cheng, Y. P. Wang, J. J. Lin, Ind. Eng. Chem. Res. 2007, 46, 7384-7388. 129. C. W. Chiu, C. C. Chu, W. T. Cheng, J. J. Lin, Eur. Polym. J. 2008, 44, 628-636. 130. Y. N. Chan, T. Y. Juang, Y. L. Liao, S. A. Dai, J. J. Lin, Polymer 2008, 49, 4796-4801. 131. Y. N. Chan, S. A. Dai, J. J. Lin, Macromolecules 2009, 42, 4362-4365. 132. M. G. Warner, J. E. Hutchison, Nat. Mater. 2003, 2, 272-277. 133. Y. Xia, B. Gates, Z. Y. Li, Adv. Mater. 2001, 13, 409-413. 134. D. E. Morse, Trends Biotechnol. 1999, 17, 230-232. 135. C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 1999, 11, 579-585. 136. S. Weiner, H. D. Wagner, Annu. Rev. Mater. Sci. 1998, 28, 271-298. 137. J. D. Hartgerink, E. Beniash, S. I. Stupp, Science 2001, 294, 1684-1688. 138. Y. Oaki, H. Imai, Angew. Chem. 2005, 117, 6729-6733. 139. G. Springholz, V. Holy, M. Pinczolits, G. Bauer, Science 1998, 282, 734-737. 140. Y. Sun, Y. Xia, Science 2002, 298, 2176-2179. 141. C. J. Murphy, Science 2002, 298, 2139-2141. 142. G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421. 143. S. Zhang, D. M. Marini, W. Hwang, S. Santoso, Biopolymers 2002, 6, 865-871. 144. S. L. Tripp, S. V. Pusztay, A. E. Ribbe, A. Wei, J. Am. Chem. Soc. 2002, 124, 7914-7915. 145. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D. Mihailovic, Science 2001, 292, 479-481. 146. M. Lee, B. K. Cho, K. J. Ihn, W. K. Lee, N. K. Oh, W. C. Zin, J. Am. Chem. Soc. 2001, 123, 4647-4648. 147. H. Colfen, S. Mann, Angew. Chem. Int. Ed. 2003, 42, 2350-2365. 148. J. C. P. Gabriel, P. Davidson, Adv. Mater. 2000, 12, 9-20. 149. A. J. Patil, E. Muthusamy, S. Mann, J. Mater. Chem. 2005, 15, 3838-3843. 150. G. Chen, S. Liu, S. Zhang, Z. Qi, Macromol. Rapid Commun. 2000, 21, 746-749. 151. C. C. Chou, Y. C. Chang, M. L. Chiang, J. J. Lin, Macromolecules 2004, 37, 473-477. 152. J. J. Lin, C. C. Chou, J. L. Lin, Macromol. Rapid Commun. 2004, 25, 1109-1112. 153. J. J. Lin, C. C. Chu,; M. L. Chiang, W. C. Tsai, Adv. Mater. 2006, 18, 3248-3252.
摘要: 本論文探討層狀有機黏土於環氧樹脂之分散性及其複合材料性質,並進一步研究黏土催化環氧樹脂開環聚合反應機制及其自我排列現象,主要可分成三個部份分別探討之: (1) 插層型與脫層型奈米黏土/環氧樹脂複合材料及其性質 製備插層型黏土(層間距約5.8 nm)與脫層型黏土(層間距 > 10 nm),分散於酚類硬化型環氧樹脂系統中,比較在不同黏土分散程度下,奈米黏土對於複合材料硬度提升、熱穩定性及降低熱膨脹係數,並保持其高透明穿透度之差異。尤其在硬度提升方面,在添加0.5 wt % 脫層型奈米黏土後,可使原本硬度只有2 H之純環氧樹脂材料提升至6 H。但在此相同的黏土添加量下,插層型黏土只能提升至4 H。經由X-ray繞射、熱性質、機械性質及型態學分析,其獨特性質與其在穿透式顯微鏡下觀察到之奈米黏土分散性有著密切的關係。 (2) 陰離子層狀雙氫氧化黏土於環氧樹脂之開環聚合反應 經由共沉澱方法製備陰離子型層狀雙氫氧化黏土(Mg2Al-NO3-LDH),並利用分子量為2000 g/mol 及 400 g/mol之poly(oxypropylene)-amindocarboxylic acid (POP-amido acid)有機化改質,使黏土層間距從原本之0.78 nm分別撐開至6.8 nm及2.7 nm,有機量也提升至80 wt %及55 wt %。再利用這兩種有機黏土去起始環氧樹脂開環聚合反應,隨著黏土含量提高,發現其起始反應溫度從182 oC降低至152 oC,硬化反應速率也有明顯提升。並進一步探討此陰離子黏土對於環氧樹脂開環聚合後,得到插層型及脫層型黏土複合材料之相關熱機械性質及型態學分析。 (3) 陽離子型層狀黏土於環氧樹脂之開環聚合反應與自我排列現象 利用聚醚胺鹽改質陽離子層狀蒙脫土及雲母(層間距約5.2 nm),起始環氧樹脂開環聚合反應,發現此複合材料可自我排列成獨特之型態如:蟲狀結構,經形態學分析此巨觀結構,其長度約8–10 μm (約46片層狀黏土)及高度約5–6 μm (約6片層狀黏土)。這些獨特結構是由層狀黏土構成其骨幹(skeleton),外面包覆著環氧樹脂開環聚合的聚醚類高分子。從黏土最小之一級結構經自我排列成此巨觀結構(片與片之間仍保有層間距約100–610 nm)。此排列過程是經由環氧樹脂propagation及硬化交聯反應驅動形成此巨觀型態,在文獻從未報導過。
Different types of layer clays are organic modified and dispersed in epoxy matrix. The organoclays could be used as catalysts and initiators for epoxy ring-opening polymerization and self-assembly. There are divided into three parts: (1) Comparisons of Physical Properties of Intercalated and Exfoliated Clay/Epoxy Nanocomposites Two types of intercalated and exfoliated silicate platelets were allowed to disperse in phenol-cured epoxy matrices. The different dispersing forms of these silicate platelets in the composites may alter their hardness, transparency, thermal stability and the coefficient of thermal expansion (CTE). In particular, the presence of silicate platelets in the epoxy substantially enhances the hardness of the pristine epoxy from 2 H to 6 H by loading only 0.5 wt % of the exfoliated platelets but only to 4 H hardness by the intercalated form (pristine 5.8 nm d spacing). Analyses by XRD, TEM, DSC, TMA and TGA were performed to characterize these silicate-added epoxies. Physical properties including CTE and Tg were correlated with the silicate platelet dispersion in matrix revealed by the TEM observations. (2) Preparation of Clay/Epoxy Nanocomposites by Layered-Double-Hydroxide Initiated Self-Polymerization An anionic clay, magnesium-aluminum layered double hydroxide (Mg2Al-NO3-LDH), was prepared by a co-precipitation method and intercalated with poly(oxypropylene)-amindocarboxylic acid (POP-amido acid). Depending on the POP-intercalating agents with molecular weight at 2000 g/mol or 400 g/mol, the intercalated LDHs were analyzed to have d spacing of 6.8 nm or 2.7 nm and organic incorporation of 80 wt % and 55 wt %, respectively. Two comparative POP/LDH hybrids were allowed to initiate the self-polymerization of the epoxy resin, diglycidyl ether of bisphenol-A (DGEBA). The curing rate was significantly increased by using the hybrids as initiators for epoxy curing, demonstrated by DSC thermal analysis that the exothermic peak shifted from 182 oC to 152 oC by increasing organoclay addition. The resultant nanocomposites prepared from the anionic LDH initiated epoxy self-polymerization have the improved thermal and physical properties, evidenced by TGA, XRD, TEM, and SEM analyses. (3) Simultaneous Occurrence of Self-Assembling Silicate Skeletons to Worm-Like Microarrays and Epoxy Ring-Opening Polymerization Unique morphologies of silicate skeleton microstructures such as semi-coliseum and foreign worm were embedded in epoxy matrix during the MMT and Mica clay initiated epoxy ring-opening polymerization. The self-assembled multilayered microstructures at 8-10 μm in length (estimated ca. 46 layers of platelets) and 5-6 μm in height were observed. These microstructures were derived from the piling of primary clay units under the pulling forces of epoxy monomer propagation. The Mica-epoxy hybrid materials comprising of silicate platelets in the multiple parallel formation (100-610 nm spacing) may have potential uses as polymer additives. Interestingly, the silicate platelet piling under the dynamic force of epoxy monomer propagation and cross-linking reaction to form worm-like microarrays may be the first observation of simultaneous occurrence of organic bonding synthesis and inorganic particle piling.
URI: http://hdl.handle.net/11455/3726
其他識別: U0005-0811200922191200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0811200922191200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.