Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/37262
標題: 伏寄普耐感性水稻突變體之篩選及其農藝性狀表現 與對氮肥需求之差異
Screening of fluazifop-tolerant and -susceptible rice mutants, and their agronomic traits and requirement for nitrogen fertilizer
作者: 劉怡伶
Liu, Yi-Ling
關鍵字: 伏寄普
fluazifop
台農67
氮肥
突變體
農藝性狀
mutants
agronomic traits
nitrogen
fertilizer
出版社: 農藝學系所
引用: 李超運、劉瑋婷、丁全孝、鄭明欽、陳正昌、曾東海、劉大江。1998。水稻新品種台稉16號之育成及其特性。花蓮區研究彙報16:1–21。 李祿豐。1999。氣象因素對宜蘭地區水稻產量之影響。花蓮區研究彙報17:93–102。 林國清。2000。水稻新品系肥效反應試驗。台南區農業改良場。稻作改良年報:174–177。 林再發。1990。第一、二期作水稻產量構成要素對產量影響分析。臺中區農業改良場研究彙報26:17–23。 林再發。1998。氮肥用量對一、二期作水稻產量及生育性狀的影響。臺中區農業改良場研究彙報61:13–23。 邱運全、吳志文。2005。水稻新品種─高雄145號(晶鑽)。高雄區農業改良場研究彙報16:1–14。 邱運全、陳正昌、曾東海。1994。水稻新品種─臺稉11號。高雄區農業改良場研究彙報6:1–13。 胡宗仁、黃秋蘭、江瑞拱。2000。水稻新品系肥效反應試驗。台東區農業改良場。稻作改良年報:182–185。 翁仁憲、陳清義。1984。臺灣水稻之光合特性與不同水稻品種在第一、二期作之物質生產及榖實生產性的比較。臺灣省農業試驗所特刊16:153–163。 許志聖、白鏹、葉茂生。2005。水稻穗部性狀的研究(1)品種間穗部性狀與稻米品質變異的初步研究。臺中區農業改良場研究彙報89:45–65。 黃秀鳳、張新軒、蔡文福。2001a。水稻不同品種對除草劑伏寄普之忍受性差異。中華民國雜草學會會刊22:61–75。 黃秀鳳、張新軒、蔡文福。2001b。伏寄普對植物地上部Malondialdehyde (MDA)含量變化之影響。中華民國雜草學會會刊22:1–12。 黃真生。1979。水稻品種臺農67號之育成。中華農業研究28:57–66。 楊依凡。2012。稉稻TNG67突變體對伏寄普耐性機制之研究。碩士論文。國立中興大學農藝學研究所。臺中。臺灣。 楊志維、簡禎佑、林佩瑩、林孟輝。2011。播種量及栽植株距對水稻桃園 3 號農藝性狀與產量之影響。桃園區農業改良場研究彙報 70:1–12。 費雯綺、王喻其。2007。植物保護手冊。行政院農業委員會藥物毒物試驗所。臺中,臺灣。 羅秋雄。2005。作物施肥手冊。行政院農業委員會。臺中,臺灣。 臺灣省政府農林廳。1995。國際種子檢查規則。行政院農業委員會。臺北,臺灣。 臺灣稻作資訊系統: Taiwan Rice Information System, TRIS。2005。http:// tris.tari.gov.tw:8080/‎。 蔣永正。2001。植物保護圖鑑系列─水稻保護(上冊) :389–394。行政院農業委員會動植物防疫檢疫局。臺北。臺灣。 蔣永正。2004。水稻田常用農藥對稻株生育之影響。中華民國雜草學會會刊25:83–96。 蔣永正、侯秉賦、王智屏、蔣慕琰。2007。牛筋草(Eleusine indica)對ACCase 抑制型除草劑抗性之探討。植物保護學會會刊49: 311–324。 賴明信、李長沛、曾清山、顏信沐、卓緯玄、曾東海、陳治官。2007。稉型稻新品種台農75的育成。臺灣農業研究56: 79–98。 賴明信、陳正昌、郭益全、呂秀英、陳治官、李長沛、曾東海。1996。現行水稻推廣品種生產力與氮肥用量之關係 I. 氮肥用量對水稻產量及產量構成要素之影響。中華農業研究 45: 203–217。 Al-Qurainy, F. and K. Salim. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Appl. Sci. J. 6: 1589–1601. Awan, M. A., C. F. Konzak, J. N. Rutger, and R. A. Nilan. 1980. Mutagenic effects of sodium azide in rice. Crop Sci. 20: 663–668. Askoy, O. and F. Dane. 2007. The effects of fusilade (fluazifop-p-butyl) on root and shoot growth of lentil (Lens culinaris Medik.) seedlings. JABS. 1: 9–13. Askoy, O. and F. Dane. 2011. Ultrastructural changes in the root tip and leaf cells of Lens culinaris treated with fluazifop-p-butyl. Turk. J. Biol. 35: 389–402. Askoy, O., F. Dane, F. E. Sanal, and T. Aktac. 2007. The effects of fusilade (fluazifop-p-butyl) on germination, mitotic frequency and a-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiol. Plant. 29: 115–120. Awan, M. A., C. F. Konzak, J. N. Rutger, and R. A. Nilan. 1980. Mutagenic effects of sodium azide in rice. Crop Sci. 20: 663–668. Ball, D. A., S. M. Frost, and L. H. Bennett. 2007. ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci. 55: 91–94. Bandaranayake, P. C. G. and J. I. Yoder. 2013. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Mol. Plant Microbe Interact. 26: 575–584. Barnes, J. W. and L. R. Oliver. 2004. Cloransulam antagonizes annual gass control with aryloxyphenoxypropionate graminicides but not cyclohexanediones. Weed Tech. 18: 763–772. Bravin, F., G. Zanin, and C. Preston. 2001a. Diclofop-methyl resistance in populations of Lolium spp. from central Italy. Weed Res. 41: 49–58. Bravin, F., G. Zanin, and C. Preston. 2001b. Resistance to diclofop-methyl in two Lolium spp. populations from Italy: studies on the mechanism of resistance. Weed Res. 41: 461–473. Burke, I. C., W. E. Thomas, J. D. Burton, J. F. Speras, and J. W. Wilcut. 2006. A seedling assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in Johnsongrass (Sorghum halepense). Weed Tech. 20: 950–955. Chandrasena, J. P. N. R. and G. R. Sagar. 1987. Effect of fluazifop-butyl on the chlorophyll content fluorescence and chloroplast ultrastructure of Elymus repens (L.) Gould, leaves. Weed Res. 27: 103–112. Cocker, K. M., D. S. Northcroft, J. O. D. Coleman, and S. R. Moss. 2001. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest. Manag. Sci. 57: 587–597. Dayan, F. E. and S. B. Watson. 2011. Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic. Biochem. Physiol. 101: 182–190. Dayan, F. E., M. L. de M. Zaccaro. 2012. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Physiol.102: 189–197. Delye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci. 53: 728–746. Derr, J. F., T. J. Monaco, and T. J. Sheets. 1985. Uptake and tanslocation of fluazifop by three annual grasses. Weed Sci. 33:612–617. Dickson, R. L., M. Andrews, R. J. Field, and E. L. Dickson. 1990. Effect of water stress, nitrogen, and gibberellic acid on fluazifop and glyphosate activity on oats (Avena sativa). Weed Sci. 38: 54–61. Dong, Z., H. Zhao, J. He, J. Huai, H. Lin, J. Zheng, Y. Liu, and G. Wang. 2011. Overexpression of a foxtail millet acetyl-CoA carboxylase gene in maize increases sethoxydim resistance and oil content. Afr. J. Biotechnol. 10: 3986–3995. Dotray, P. A., J. M. DiTomaso, J. W. Cronwald, D. L. Wyse, and L. V. Kochian. 1993. Effects of acetyl-coenzyme A carboxylase inhibitors on root cell transmembrane electric potentials in graminicide-tolerant and -susceptible corn (Zea mays L.). Plant Physiol. 103: 919–924. Egli, M. A., B. C. Cengenbach, J. W. Cronwald, D. A. Somers, and D. Wyse. 1993. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol. 101: 499–506. Guo, Z., M. Huang, S. Lu, Z. Yaqing, and Q. Zhong. 2007. Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidants and chlorophyll a fluorescence. Acta Physiol. Plant. 29: 39–46. Hatterman-Valenti, H. M., A. Pitty, and M. D. K. Owen. 2006. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 54: 607–614. Hausler, R. E., J. A. Holtum, and S. B. Powles. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 97: 1035–1043. Herbert, D. L. J. Price, C. Alban, L. Dehaye, D. Job, D. J. Cole, K. E. Pallett, and J. L. Harwood. 1996. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem. J. 318: 997–1006. Hidayat, I. and C. Preston. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-p-butyl. Pestic. Biochem. Physiol. 57: 137–146. Hidayat, I. and C. Preston. 2001. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis. Pestic. Biochem. Physiol. 71: 190–195. Horbowicz, M., C. Sempruch, R. Kosson, D. Koczkodaj, and D. Walas. 2013. Effect of fluazifop-p-butyl treatment on pigments and polyamines level within tissues of non-target maize plants. Pestic. Biochem. Physiol. doi. 10.1016/j.pestbp.2013.05.008. Ishihara Sangyo Kaisha, LTD. 2013. Fuazifop-p-butyl. http://www.iskweb.co.jp/products/pdf/fluazifop-p-butyl.pdf Kells, J. J., W. F. Meggitt, and D. Penner. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143–149. Konishi T and Y. Sasaki. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc. Natl. Acad. Sci. USA 91: 3598–3601. Konishi, T., K. Shinohara, K. Yamada, and Y. Sasaki. 1996. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol. 37: 117–122. Leach, G. E., M. D. Devine, R. C. Kirkwood, and G. Marshall. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica. Pestic. Biochem. Physiol. 51: 129–136. Luo, X. Y. and H. Matsumoto. 2002. Susceptibility of a broad-leaved weed, Acanthospermum hispidum, to the grass herbicide fluazifop-butyl. Weed Biol. Manag. 2: 98–103. Luo, X. Y., H. Matsumoto, and K. Usui. 2001. Comparison of physiological effects of fluazifop-butyl and sethoxydim on oat (Avena sativa L.). Weed Biol. Manag. 1: 120–127. Luo, X. Y., Y. Sunohara, and H. Matsumoto. 2004. Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pestic. Biochem. Physiol. 78: 93–102. Madoka, Y., K. I. Tomizawa, J. Mizoi, I. Nishida, Y. Nagano, and Y. Sasaki. 2002. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol. 43: 1518–1525. Marshall, G., R. C. Kirkwood, and G. E. Leach. 1994. Comparative studies on graminicide-resistant and susceptible biotypes of Eleusine indica. Weed Res. 34: 177–185. Olsen, O., X. Wang, and D. V. Wettstein. 1993. Sodium azide mutagenesis: Preferential generation of AT→GC transitions in the barley Antl8 gene. Proc. Natl. Acad. Sci. USA 90: 8043–8047. Powles, S. B. and Q. Yu. 2010. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 61: 317–347. Roesler, K., D. Shintani, L. Savage, S. Boddupalli, and J. Ohlrogge. 1997. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 113: 75–81. Rokich, D. P., J. Harma, S. R. Turner, R. J. Sadler, and B. H. Tan. 2009. Fluazifop-p-butyl herbicide: implications for germination, emergence, and growth of Australian plant species. Biol. Conserv. 142:850–869. Sasaki, Y., T. Konishi, and Y. Nagano. 1995. The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol. 108: 445–449. Seefield, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Tech. 9: 218–227. Singh, S. 2005. Characterization of the activity of fluazifop-butyl on bristly starbur (Acanthospermum hispidum DC.) and trimethylsulfonium salt of glyphosate on round-upready cotton (Gossypium hirsutum L.). Master thesis. Lake Alfred; Citrus Research amd Education Center, University of Florida. Soliman, I. E. and A. M. Hamza. 2010. Evaluation of some herbicides against flax dodder (Cuscuta Epilinum Weihe) in fibre flax (Linum Ustatissimum L.) cultivation. J. Plant Prot. Res.50: 372–377. Tal, A., S. Zarka, and B. Rubin. 1996. Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol. 56: 134–140. Teuton, T. C., G. E. Macdonald, C. L. Main, and B. J. Brecke. 2006. Characterization of fluazifop-p-butyl activity on bristly starbur (Acanthospermum hispidum). Weed Tech. 20: 717–721. Travlos, I. S. 2013. Competition between ACCase-inhibitor resistant and susceptible sterile wild oat (Avena sterilis) biotypes. Weed Sci. 61: 26–31. Tu, M., C. Hurd, and J. M. Randall. 2001. Weed control methods handbook: tools and techniques for use in natural areas. Handbook: 7c.1–7c.6. Vergara, B. S., A. Tanaka, R. Lilis, and S. Puranabhavung. 1966. Relationship between growth duration and grain yield of rice plants. J. Soil Sci. Plant Nutr. 12: 31–39. Vila-Aiub, M. M., P. Neve, K. J. Steadman, and S. B. Powles. 2005. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 42: 288–298. Volenberg, D. and D. Stoltenberg. 2002. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. Weed Res. 42: 342–350. Walker, K. A., S. M. Ridley, T. Lewis, and J. L. Harwood. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254: 307–310. Wang, T., J. C. Picard, X. Tian, and H. Darmency. 2010. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity 105: 394–400. Wiederholt, R. J. and D. E. Stoltenberg. 1996a. Absence of differential fitness between giant foxtail (Setaria faberi) accessions resistant and susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Sci. 44:18–24. Wiederholt, R. J. and D. E. Stoltenberg. 1996b. Similar fitness between large crabgrass (Digitaria sanguinalis) accessions resistant or susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Tech. 10: 42–49. Wright, J. P. 1994. Use of membrane potential measurements to study mode of action of diclofop-mthyl. Weed Sci. 42: 285–292. Yanai, Y., T. Kawasaki, H. Shimada, E. S. Wurtele, B. J. Nikolau, and N. Ichikawa. 1995. Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: Tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol. 36: 779–787. Yoshida, S., D. A. Forno, J. Cock., and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice. Laguna: International Rice Research Institute pp. 43–45. Yu, Q., A. Cairns, and S. Powles. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499–513. Yu, Q., L. J. S. Friesen, X. Q. Zhang, and S. B. Powles. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestics. Biochem. Physiol. 78: 21–30.
摘要: 本研究比較秈型(Indica-type)及稉型(Japonica-type)水稻對除草劑伏寄普(fluazifop)之敏感性差異,根據種子發芽率、胚根伸長及幼苗傷害反應,顯示兩型水稻對於伏寄普之敏感度相似。此外,從秈稻IR64品種經疊氮化鈉誘變所得之654個突變體(M6世代),分別篩選出對伏寄普具耐性及感性之突變體。IR64四葉期幼苗在伏寄普葉面噴施下,使用非線性迴歸分析之log-logistic模式分析水稻對伏寄普之劑量反應(dose response),以引起植株傷害達50%之藥劑濃度(ED50)1.0 mM作為耐、感性突變體篩選之參考劑量。供試之654個突變體在1.0 mM伏寄普處理後,依傷害指數初步選出較具感性之突變體3個品系S174、S196、S264及具耐性之突變體3個品系T61、T467、T736。由於本研究室同時篩選出稉稻TNG67品種經NaN3誘變後之耐感性突變體(楊,2012),故與IR64突變體進行耐感性程度比較,根據葉綠素螢光分析,發現稉稻TNG67突變體對於伏寄普有較大的耐感性差異程度,耐感性差異達2.19倍,而IR64突變體耐感性差異僅達1.38倍,因此本研究後續以TNG67突變體耐性SA481及感性SA495品系為材料,比較其與TNG67在農藝性狀與對氮素需求性之差異,評估耐性品系SA481實際栽培及推廣之可行性。
In order to compare the sensitivities of Indica- and Japonica-type rice to fluazifop, dose-responses to fluazifop based on seed germination, radicle elongation and seedling growth were analyzed. Experimental results showed that both types of rice had similar sensitivity to this herbicide. In this study, tolerant (T) line 61, 467 and 736, as well as susceptible (S) line 174, 196 and 264 were selected from 654 rice mutants (M6 generation) pool, which were mutated from Indica-type cv. IR64 by NaN3. However, further comparison of fluazifop tolerance (based on chlorophyll fluorescence response) showed that the mutant pool from TNG67 had a larger variation of fluazifop tolerance between T and S lines than that from IR64. Therefore, tolerant SA481 and susceptible SA495 were selected. On the other hand, the agronomic traits and nitrogen requirement of fluazifop-tolerant mutant were also studied for the purpose of further cultivation.
URI: http://hdl.handle.net/11455/37262
其他識別: U0005-2508201316060700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508201316060700
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.