Please use this identifier to cite or link to this item:
標題: 利用外表型及植物化學成份進行紫錐菊(Echinacea purpurea L. Moench)的混合選拔
Mass selection of Echinacea purpurea L. Moench by phenotypic and phytochemical traits
作者: 吳佳蓉
Wu, Chia-Jung
關鍵字: 紫錐菊
Echinacea purpurea
total phenolic
mass selection
出版社: 農藝學系所
引用: 吳孟禧。2007。紫錐菊原料品質評估之研究。國立中興大學農藝學系碩士論文。台中。 林資哲。2003。紫錐菊咖啡酸衍生物含量與抗氧化能力分析。國立中興大學農藝學系碩士論文。台中。 高典林。1994。園藝作物育種學。台中:國立中興大學。pp. 12-17。 張世政。2005。台灣地區紫錐菊生產與品質評估之研究。國立中興大學農藝學系碩士論文。台中。 莊淑貞。2008。RAPD及AFLP分子標誌技術在紫錐菊遺傳變異之研究。國立中興大學農藝學系博士論文。台中。 行政院衛生署 食品藥物管理局 Accessed June 12, 2012. Agrios, G. N. 2005. Plant diseases caused by mollicutes: phytoplasmas and spiroplasmas. In “Plant pathology. 5th Ed.” pp. 687-703. San Diego : Academic Press. Aly, S. M. and M. F. Mohamed. 2010. Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr. 94: 31-39. Andersen, J. R. and T. Lübberstedt. 2003. Functional markers in plants. Trends Plant Sci. 8: 554-560. Barrett, B. 2003. Medicinal properties of Echinacea: a critical review. Phytomedicine 10: 66-86. Baum, B. R., S. Mechanda, J. F. Livesey, S. E. Binns, and J. T. Arnason. 2001. Predicting quantitative phytochemical markers in single Echinacea plants or clones from their DNA fingerprints. Phytochemistry 56: 543-549. Bergeron, C., J. F. Livesey, D. V. C. Awang, J. T. Arnason, J. Rana, B. R. Baum, and W. Letchamo. 2000. A quantitative HPLC method for the quality assueance of Echinacea products on the North American market. Phytochem. Anal. 11: 207-215. Binns, S. E., J. T. Arnason, and B. R. Baum. 2002. Phytochemical variation within populations of Echinacea angustifolia (Asteraceae). Biochem. Syst. Ecol. 30: 837-854. Blumenthal, M., A. Lindstrom, M. A. Lynch, and P. Rea. 2011. Herb sales growth continues - up 3.3% in 2010. HerbalGram 90: 64-67. Brown, P. N., M. Chan, and J. M. Betz. 2010. Optimization and single-laboratory validation study of a high-performance liquid chromatography (HPLC) method for the determination of phenolic Echinacea constituents. Anal. Bioanal. Chem. 397: 1883-1892. Cavaliere, C., P. Rea, M. E. Lynch, and M. Blumenthal. 2010. Herbal supplement sales rise in all channels in 2009. HerbalGram 86: 62-65. Chen, C. L., S. C. Zhang, and J. M. Sung. 2008. Biomass and caffeoyl phenols production of Echinacea purpurea grown in Taiwan. Exp. Agric. 44: 497-507. Collard, B. C. Y. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. Cornish, K., J. W. Radin, E. L. Turcotte, Z. Lu, and E. Zeiger. 1991. Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiol. 97: 484-489. Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Duman, I., E. Duzyaman, D. Esiyok, and H. Vural. 2005. Improving productivity of open-pollinated processing tomato cultivars. HortScince 40: 1682-1685. Golsefidi, M. A., Z. Es’haghi, and A. Sarafraz-Yazdi. 2012. Design, synthesis and evaluation of a moleculary imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants. J. Chromatogr. A 1229: 24-29. Guarnerio, F. C., M. Fraccaroli, I. Gonzo, G. Pressi, R. D. Toso, F. Guzzo, and M. Levi. 2012. Metabolomic analysis reveals that the accumulation of specific secondary metabolites in Echinacea angustifolia cells cultured in vitro can be controlled by light. Plant Cell Rep. 31: 361-367. Haller, J., T. F. Freund, K. G. Pelczer, J. Füredi, L. Krecsak, J. Zámbori. 2012. The anxiolytic potential and psychotropic side effects of an Echinacea preparation in laboratory animals and healthy volunteers. Phytother. Res. doi: 10.1002/ptr.4677. Hu, C. and D. D. Kitts. 2000. Studies on the antioxidant of Echinacea root extract. J. Agric. Food Chem. 48: 1466-1472. Kapteyn, J., P. B. Goldsbrough, and J. E. Simon. 2002. Genetic relationships and diversity of commercially relevant Echinacea species. Theor. Appl. Genet. 105: 369-376. Kim, H., T. D. Durance, C. H. Scaman, and D. D. Kitts. 2000. Retention of caffeic acid derivatives in dried Echinacea purpurea. J. Agric. Food Chem. 48: 4182-4186. Kindscher, K., D. M. Price, and L. Castle. 2008. Resprouting of Echinacea angustifolia augments sustainability of wild medicinal plant populations. Econ. Bot. 62: 139-147. Landy, N., G. Ghalamkari, M. Toghyani, and F. Moattar. 2011. The effects of Echinacea purpurea L. (purple coneflower) as an antibiotic growth promoter substitution on performance, carcass characteristics and humoral immune response in broiler chickens. J. Med. Plants Res. 5: 2332-2338. Lee, J. and C. F. Scagel. 2010. Chicoric acid levels in commercial basil (Ocimum basilicum) and Echinacea purpurea products. J. Funct. Foods 2: 77-84. Li, T. S. C. 1998. Echinacea: cultivation and medicinal value. HortTechnology 8: 122-129. McKeown, K. A. 1999. A review of the taxonomy of the genus Echinacea. In “Perspectives on New Crops and New Uses”, ed. J. Janick, pp. 482-489. Alexandria: American Society for Horticultural Science Press. Mendes, M. P., M. A. P. Ramalho, and A. F. B. Abreu. 2012. Strategies in identifying individuals in a segregant population of common bean and implications of genotype x environment interaction in the success of selection. Genet. Mol. Res. 11: 872-880. Moose, S. P., J. W. Dudley, and T. R. Rocheford. 2004. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9: 358-364. Mrozikiewicz, P. M., A. Bogacz, M. Karasiewicz, P. L. Mikolajczak, M. Ozarowski, A. Seremak-Mrozikiewicz, B. Czerny, T. Bobkiewicz-Kozlowsk, and E. Grzeskowiak. 2010. The effect of standardized Echinacea purpurea extract on rat cytochrome P450 expression level. Phytomedicine 17: 830-833. Na, D. H., H. Y. Ji, E. J. Park, M. S. Kim, K. H. Liu, and H. S. Lee. 2011. Evaluation of metabolism-mediated herb-drug interactions. Arch. Pharm. Res. 34: 1829-1842. Pellati, F., S. Benvenuti, M. Melegari, and T. Lasseigne. 2005. Variability in the composition of anti-oxidant compounds in Echinacea species by HPLC. Phytochem. Anal. 16: 77-85. Pellati, F., F. Epifano, N. Contaldo, G. Orlandini, L. Cavicchi, S. Genovese, D. Bertelli, S. Benvenuti, M. Curini, A. Bertaccini, and M. G. Bellardi. 2011. Chromatographic methods for metabolite profiling of virus and phytoplasma-infected plants of Echinacea purpurea. J. Agric. Food Chem. 59: 10425-10434. Percival, S. S. 2000. Use of Echinacea in medicine. Biochem. Pharmacol. 60: 155-158. Perry, N. B., J. W. V. Klink, E. J. Burgess, and G. A. Parmenter. 1997. Alkamide levels in Echinacea purpurea: a rapid analytical method revealing differences among roots, rhizomes, stems, leaves and flowers. Planta Med. 63: 58-62. Posselt, U. K. 2010. Breeding methods in cross-pollinated species. In “Fodder Crops and Amenity Grasses”, eds. B. Boller, U. K. Posselt, and F. Veronesi, pp. 39-87. New York: Springer. Romero, F. R., K. Delate, D. J. Hannapel, Y. Liu, and P. Murphy. 2010. Horticultural and biochemical variations due to seed source and production methods in three Echinacea spp. J. Herbs Spi. Med. Plants 16: 167-192. Sarquís, J. I., H. Gonzalez, E. Sánchez de Jiménez, and J. R. Dunlap. 1998. Physiological traits associated with mass selection for improved yield in a maize population. Field Crops Res. 56: 239-246. Schierwater, B. and A. Ender. 1993. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21: 4647-4648. Schlötterer, C. 2004. The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69. Schulman, A. H. 2007. Molecular markers to assess genetic diversity. Euphytica 158: 313-321. Shah, S. A., S. Sander, C. M. White, M. Rinaldi, and C. I. Coleman. 2007. Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis. Lancet Infect. Dis. 7: 473-480. Sheorey, R. R. and A. Tiwari. 2011. Random amplified polymorphic DNA (RAPD) for identification of herbal materials and medicines - A review. J. Sci. Ind. Res. 70: 319-326. Solieman, T. H., H. S. Abdel-Razzak, A. R. El-Gazzar, and M. M. Doss. 2012. Efficiency of mass selection and selfing with selection breeding methods on improving some important characters of three eggplant cultivars. Am. Eurasian. J. Agric. Environ. Sci. 12: 342-351. Steyerberg, E. W., M. J. C. Eijkemans, and J. D. F. Habbema. 1999. Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. J. Clin. Epidemiol. 52: 935-942. Taga, M. S., E. E. Miller, and D. E. Pratt. 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil. Chem. Soc. 61: 928-931. Thygesen, L., J. Thulin, A. Mortensen, L. H. Skibsted, and P. Molgaard. 2007. Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem. 101: 74-81. Toselli, F., A. Matthias, and E. M. J. Gillam. 2009. Echinacea metabolism and drug interactions: the case for standardization of a complementary medicine. Life Sci. 85: 97-106. Vijayan, K., P. P. Srivatsava, C. V. Nair, A. K. Awasthi, A. Tikader, B. Sreenivasa, and S. R. Urs. 2006. Molecular characterization and identification of markers associated with yield traits in mulberry using ISSR markers. Plant Breed. 125: 298-301. Virk, P. S., B. V. Ford-Lloyd, M. T. Jackson, H. S. Pooni, T. P. Clemeno, and H. J. Newbury. 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76: 296-304. Wagenius, S. 2004. Style persistence, pollen limitation, and seed set in the common prairie plant Echinacea angustifolia (Asteraceae). Int. J. Plant Sci. 165: 595-603. Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218. Williams, J. G. K., A. R. Kamada, K. J. Livak, J. A. Rafalki, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Woelkart, K. and R. Bauer. 2007. The role of alkamides as an active principle of Echinacea. Planta Med. 73: 615-623. Wu, L., E. W. Rowe, K. Jeftinija, S. Jeftinija, L. Rizshsky, B. J. Nikolau, J. McKay, M. Kohut, and E. S. Wurtele. 2010. Echinacea-induced cytosolic Ca2+ elevation in HEK293. BMC Complement Altern. Med. 10: 72. Yotsawimonwat, S., J. Rattanadechsakul, P. Rattanadechsakul, and S. Okonogi. 2010. Skin improvement and stability of Echinacea purpurea dermatological formulations. Int. J. Cosmet. Sci. 32: 340-346. Zhai, Z., A. Solco, L. Wu, E. S. Wurtele, M. L. Kohut, P. A. Murphy, and J. E. Cunnick. 2010. Echinacea increases arginase activity and has anti-inflammatory properties in RAW 264.7 macrophage cells indicative of alternative macrophage activation. J. Ethnopharmacol. 122: 76-85. Zhao, Q., J. Gao, W. Li, and D. Cai. 2010. Neurotrophic and neurorescue effects of echinacoside in the subacute MPTP mouse model of Parkinson''s disease. Brain Res. 1346: 224-236. Zolgharnein, J., A. Niazi, S. Afiuni-Zadeh, and K. Zamani. 2010. Determination of cichoric acid as a biomarker in Echinacea purpurea cultivated in Iran using high performance liquid chromatography. Chin. Med. 1: 23-27.
摘要: 紫錐菊為異交作物,已被做為藥用植物使用多年,通常可用於治療感冒、咳嗽、上呼吸道感染等,並可增強人體的免疫系統。紫錐菊主要具植物活性的成分,包括咖啡酸衍生物、烷醯胺及多醣體等物質,這些在藥理上的作用使得紫錐菊相關產品在市場的需求增加。本研究以隨機增幅多型性DNA分子標誌複回歸模式進行對紫錐菊葉片和花部總酚值的預估,並同時對總咖啡酸衍生物、烷醯胺和植物外表性狀進行調查。經由統計分析的結果顯示葉部和花部總酚預測值與實測值並沒有顯著相關,但從經過選拔兩年的高酚集團性狀和植物化學成份觀測上,認為花朵數和葉部總酚值可以有效地作為提升紫錐菊總酚類量和總咖啡酸含量的選育指標。在改善隨機增幅多型性DNA分子輔助育種上,進行逐步回歸分析尋找與植物化學成份相關性較高的分子標誌opJ1-1400、opC1-1250、opF7-800,將可於未來發展做為SCAR或CAPS專一性和再現性較高的分子標誌。
Echinacea purpurea (L.) Moench, commonly known as purple coneflower, is a medicinal heterozygous plant that has been used for centuries, customarily as a treatment for the common cold, coughs, upper respiratory infections, and immune system enhancement. The major phytoactive constituents of Echinacea are caffeic acid derivatives, alkylamides, and polysaccharides, that have attracted the most interest in term of having useful pharmacological activity, and are in great demand in the market. In the present study, RAPD marker generated from previous study were used to predict the content of total phenolic in leaves and florets through multiple-regression analysis. The contents of caffeoyl phenols, alkylamides, and plant morphogical characters were also investigated. Statistical analyses revealed that there are no significant correlation in total phenols between predicted and actual values for leaves and florets in test populations. However, total phenol content in leaf coupled with flower head number were proven to be an effectively screening indexes for improving E. purpurea population with high total phenol and caffeic acid derivatives during mass selection. To improve RAPD maker assistant selection, stepwise regression analysis indicated that RAPD makers opJ1-1400, opC1-1250 and opF7-800 showed significant correlations with the examined phytochemical traits during two cycle tests. These RAPD markers might be useful to develop the SCAR marker or CAPS marker with higher specificity and reproducibility in the future.
其他識別: U0005-1208201216141200
Appears in Collections:農藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.