Please use this identifier to cite or link to this item:
標題: 建立病毒誘導基因沉寂系統進行圓葉菸草多元胺生合成相關基因之分析
Development of virus-induced gene silencing system to study polyamine synthesis-related genes in Nicotiana benthamiana
作者: 林堂煌
Lim, Tang-Huang
關鍵字: 病毒誘導基因沉寂
virus-induced gene silencing
ornithine decarboxylase
methyl jasmonate
出版社: 農藝學系所
引用: 參考文獻 陳志威. 2003. 茄科作物脯胺酸代謝相關基因之選殖及其功能分析. 國立中興大學農藝學研究所碩士論文. 蘇彥碩. 2005. 逆境下菸草 (Nicotiana benthamiana) 脯胺酸代謝基因之調控. 國立臺灣大學農業化學研究所碩士論文. 胡智傑. 2008. 利用病毒誘導基因沉寂探討逆境誘導下菸草脯胺酸合成酵素的角色. 國立臺灣大學農業化學研究所碩士論文. Acosta, C., M. A. Perez-Amador, J. Carbonell, and A. Granell. 2005. The two ways to produce putrescine in tomato are cell-specific during normal development. Plant Sci. 168: 1053-1057. Alcazar, R., B. Marta, Z. Xavier, and F. T. Antonio. 2012. Polyamine metabolism and signaling in plant abiotic stress protection. Recent Advances in Pharmaceutical Sciences II, Kerala, India, p. 29-47. ISBN: 978-81-7895-569-8. Alcazar, R., F. Marco, J. C. Cuevas, M. Patron, A. Ferrando, P. Carrasco, A. F. Tiburcio, and T. Altabella. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28: 1867-1876. An, S.H., K.H. Sohn, H.W. Choi, I.S. Hwang, S.C. Lee, and B. K. Hwang. 2008. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228: 61-78. Armengaud, P., R. Breitling, and A. Amtmann. 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136: 2556-2576. Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. Bates, L. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. Bortolotti, C., A. Cordeiro, R. Alcazar, A. Borrell, F.A. Culianez-Macia, F. Tiburcio, and T. Altabella. 2004. Localization of arginine decarboxylase in tobacco plants. Physiol. Plant. 120: 84-92. Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140: 103-125. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Burch-Smith, T. M., J. C. Anderson, G. B. Martin, and S. P. Dinesh-Kumar. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39: 734-746. Carbonell, J., and M. A. Blazquez. 2009. Regulatory mechanisms of polyamine biosynthesis in plants. Genes Genomics 31: 107-118. Capell, T., L. Bassie, and P. Christou. 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Nat. Acad. Sci. USA. 101: 9909-9914. Casper, S. J., and C. A. Holt. 1996. Expression of the green fluorescent protein-encoding gene from Tobacco mosaic virus-based vector. Gene 173: 69-73. Chen, C. T., C. M. Chou, and C. H. Kao. 1994. Methyl jasmonate induces the accumulation of putrescine but not proline in detached rice leaves. J. Plant Physiol. 143: 119-121. Childs, A. C., D. J. Metha, and E. W. Gerner. 2003. Polyamine-dependent gene expresssion. Cell Mol. Life Sci. 60: 1394-1406. Cohen, S. S. 1998. A guide to the polyamines. Oxford University Press, New York. Coelho, P. S. R., A. Kumar, and M. Snyder. 2000. Genome-wide mutant collections: toolboxes for functional genomic. Curr. Opin. Microbiol. 3: 309-315. Cuevas, J. C., R. Lopez-Cobollo, R. Alcazar, X. Zarza, C. Koncz, T. Altabella, and A. Ferrando. 2008. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating ABA levels in response to low temperature. Plant Physiol. 148: 1094-1105. Cuevas, J. C., R. Lopez-Cobollo, R. Alcazar, X. Zarza, C. Koncz, T. Altabella, J. Salinas, A. F. Tiburcio, and A. Ferrando. 2009. Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal. Behav. 4: 219-220. Cvikrova, M., L. Gemperlova, J. Dobra, O. Martincova, I. T. Prasil, J. Gubis, and R. Vankova. 2012. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci. 2012: 182:49-58. Deboer, K. D., H. L. Dalton, F. J. Edward, and J. D. Hamill. 2011. RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72: 344-355. Duan, J. J., J. Li, S. R. Guo, and Y.Y. Kang. 2008. Exogenous Spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165: 1620-1635. Flores, He., and A. Galston. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706. Galston, A. W., A. Altman, and R. Kaur-Sawhney. 1978. Polyamines, ribonucleases, and the improvement of oat leaf protoplasts. Plant Sci. Lett. 11: 69-79. Gallie, D. R. and M. Kobayashi. 1994. The role of the 3''-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142: 159-165. Ge, C., X. Cui, Y. Wang, Y. Hu, Z. Fu, D. Zhang, Z. Cheng, and J. Li. 2006. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res. 16: 446-456. Gemperlova, L., J. Eder, and M. Cvikrova. 2005. Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol. Biochem. 43: 375-381. Groppa, M. D., and M. P. Benavides. 2007. Polyamines and abiotic stress: recent advances. Amino Acids 34: 35-45. Hanfrey, C., S. Sommer, M. J. Mayer, D. Burtin, and A. J. Michael. 2001. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J. 27: 551-560. Hummel, I., G. Gouesbet, A. El Amrani, A. Ainouche, and I. Couee. 2004. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342: 199-209. Hussain, S. S., M. Ali, M. Ahmad, and K. H. Siddique. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29: 300-311. Igarashi, K., and K. Kashiwagi. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271: 559-564. Illingworth, C., and A. J. Michael. 2011. Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide. Amino Acids 42: 519-527. Imai, A., T. Akiyama, T. Kato, S. Sato, S. Tabata, K. T. Yamamoto, and T. Takahashi. 2004a. Spermine is not essential for survival of Arabidopsis. FEBS Lett. 556: 148-152. Jan, F. J., F. Fagoaga, S. Z. Pang, and D. Gonsalves. 2000a. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81: 235-242. Jan, F. J., F. Fagoaga, S. Z. Pang, and D. Gonsalves. 2000b. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81: 2103-2109. Kasinathan, V., and A. Wingler. 2004. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Plant Physiol. 121: 101-7. Kaur, H., N. Heinzel, M. Schottner, I. T. Baldwin, and I. Galis. 2010. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol. 152: 1731-1747. Kaur-Sawhney, R., A. F. Tiburcio, T. Altabella, and A. Galston. 2003. Polyamines in plants: an overview. J. Cell Mol. Biol. 2: 1-12. Kim, M., J.W. Ahn, U.H. Jin, D. Choi, K.H. Paek, and H.S. Pai. 2003. Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J. Biol. Chem. 278: 19406-19415. Ku, H. M., C. C. Hu, H. J. Chang, Y. T. Lin, F. J. Jan, and C. T. Chen. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiol. Biochem. 49: 1147-1154. Kumagai, M. H., J. Donson, G. Della-Cioppa, K. Harvey, K. Hanley, and L. K. Grill, 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92: 1679-1683. Kumar, A., T. Altabella, M. A. Taylor, and A. F. Tiburcio. 1997. Recent advances in plant polyamine research. Trends Plant Sci. 2: 124-130. Kusano, T., T. Berberich, C. Tateda, and Y. Takahashi. 2008. Polyamines: essential factors for growth and survival. Planta 228: 367-381. Kusano, T., K. Yamaguchi, T. Berberich, and Y. Takahashi. 2007b. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav. 2: 250-251. Kusunoki, S., and I. Yasumasu. 1978. Inhibitory eVect of α-hydrazinoornithine on egg cleavage in sea urchin eggs. Dev. Biol. 67: 336-345. Kuznetsov, V. V., and N. I. Shevyakova. 2010. Polyamines and plant adaptation to saline environments. Desert Plants 3: 261-298. Li, H., C. J. Meininger, J. R. Hawker, T. E. Haynes, D. KepkaLenhart, S. K. Mistry, S. M. Morris, and G. Wu. 2001. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 280: 75-82. Lindbo, J.A., L. Silva-Rosales, W. M. Proebsting, and W. G. Dougherty. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749-1759. Liu, K., H. Fu, Q. Bei, and S. Luan. 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124: 1315-1326. Malmberg, R. L., M. B. Watson, G.L. Galloway, and W. Yu. 1998. Molecular genetic analysis of plant polyamines. Crit. Rev. Plant Sci. 17: 199-224. Marco, F., R. Alcazar, A. F. Tiburcio, and P. Carrasco. 2011. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. Omics 15: 775-781. Mehta, R. A., T. Cassol, N. Li, N. Ali, A. K. Handa, and A. K. Matto. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol. 20: 613-618. Mueller, E., J. Gilbert, G. Davenport, G. Brigneti, and D. C. Baulcombe. 1995. Homology-dependent resistance: Transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7: 1001-1013. Nayyar, H., S. Kaur, Smita, S. Kumar, K. J. Singh and K. K. Dhir. 2005. Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot. Bull. Acad. Sinica 46: 333-338. Napoli, C., C. Lemieux, and R. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289. Ooms, G., Hooykaas, P. J. J., Van Veen, R. J. M., Van Beelen, P., Regensburg-Tuink, T. J. G. and Schilperoort, R. A. 1982. Octopine Ti plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7:15–29. Pang, X.M., Z. Y. Zhang, X. P. Wen, Y. Ban, and T. Moriguchi. 2007. Polyamine, all-purpose players in response to environment stresses in plants. Plant Stress 1: 173-88. Penninckx, I., B. Thomma, A. Buchala, J. P. Metraux, and W. F. Broekaert. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113. Peremarti, A., L. Bassie, C. F. Zhu, P. Christou, and T. Capell. 2010. Molecular characterization of the Arginine decarboxylase gene family in rice. Transgenic Res. 19: 785-797. Perez-Amador, M. A., J. Leon, P. J. Green, and J. Carbonell. 2002. Induction of the Arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol. 130: 1454-63. Ryabova, L. A., A. F. Torgashov, O. V. Kurnasov, M. G. Bubunenko, and A. S. Spirin. 1993. The 3’-terminal intranslated region of alfalfa mosaic virus RNA 4 facilitates the RNA entry into translation in a cell-free system. FEBS Lett. 326: 264-266. Rider, J. E., A. Hacker, C. A. Mackintosh, A. E. Pegg, P. M. Woster, and R. A. Casero Jr. 2007. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33: 231-240. Roy, M., and R. Wu. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 163: 987-92. Ruiz, M. T., Voinnet, O. and Baulcombe, D. C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946. Sarowar, S., H.W. Oh, H.S. Cho, K.H. Baek, E.S. Seong, Y.H. Joung, G.J. Choi, S. Lee, and D. Choi. 2007. Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J. 51: 792-802. Seiler, N., and F. Raul. 2005. Polyamines and apoptosis. J. Cell Mol. Med. 9: 623-642. Senthil-Kumar, M., and M. Udayakumar. 2006. High-throughput virus-induced gene-silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to lea4. J. Exp. Bot. 57: 2291-2302. Terryn, N., P. Rouze, and M. Van Montagu. 1999. Plant genomics. FEBS Lett. 452: 3-6. Thomas, T., and T. J. Thomas. 2001. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol. Life Sci. 58: 244-258. Urano, K., T. Hobo, and K. Shinozaki. 2005. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett. 579: 1557-1564. Urano, K., Y. Yoshiba, T. Nanjo, Y. Igarashi, M. Seki, F. Sekiguchi, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2003. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ. 26: 1917-1926. Urano, K., Y. Yoshiba, T. Nanjo, Y. Ito, M. Seki, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2004. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem. Biophys. Res. Commun. 313: 369-75. Van der Krol, A. R., L. A. Mur, M. Beld, J. N. M. MOI, and A. R. Stuitje. 1990. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291-299. Van Leeuwenhoek A. 1678. Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis. Philos. Trans. R. Soc. Lond.12: 1040-1043. Vijayan, P., J. Shockey, A. Levesque, R. J. Cook, and J. Browse. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA. 95: 7209-7214. Waie, B., and M. V. Rajam. 2003. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci. 164: 727-34. Walden, R., A. Cordeiro, and A. F. Tiburcio. 1997. Polyamines: small molecules triggering pathways in plant-growth and development. Plant Physiol. 113: 1009-1013. Wang, L. Y., S. S. Lin, T. H. Hung, T. K. Li, N. C. Lin, and T. L. Shen. 2012. Multiple domains of the Tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol. Plant Microbe In. 25: 648-657. Wang, X., Y. Ikeguchi, D. E. McCloskey, P. Nelson, and A. E. Pegg. 2004. Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J. Biol. Chem. 279: 51370-51375. Watson, M. B., K. K. Emory, R. M. Piatak, and R. L. Malmberg. 1998. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 13: 231-9. Wintermans, J.F., and G. M. de MOTS A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their Phaeophytins in ethanol. Biochim. Biophys. Acta 109: 448-453. Yang, J. C., J. H. Zhang, K. Liu, Z. Q. Wang, and L. J. Liu. 2007. Involvement of polyamines in the drought resistance of rice. J. Exp. Bot. 58: 1545-1555.
摘要: 本實驗室目前具有由T7啓動子調控菸草嵌纹病毒 (Tobacco mosaic virus, TMV) 之感染性選殖株 (infectious clone),由於該系統的缺點為操作過程繁瑣、藥品昂貴以及RNA容易被降解而可能影響試驗的穩定性,本研究將TMV全長度基因體構築於Ti-質體 (tumor inducing plasmid, Ti-plasmid),成功建立生體内 (in vivo) 感染性選殖株的系統。多元胺 (Polyamines, PAs) 是一類具有生物活性的低分子脂肪族陽離子,存在於所有生物體中。鳥胺酸脫羧酶 (ornithine decarboxylase, ODC) 與精胺酸脫羧酶 (arginine decarboxylase, ADC) 是已知合成多元胺的兩種酵素。從即時反轉錄聚合酶鏈鎖反應 (real-time Reverse Transcription-Polymerase Chain Reaction, real-time RT-PCR) 的結果發現施用甲基茉莉酸 (methyl jasmonate, MeJ) 會大量誘導ODC基因的表現,但其詳細調控機制目前尚未確認。本論文利用所建立的生體内TMV感染性選殖株系統作爲病毒誘導基因沉寂 (virus-induced gene silencing, VIGS) 的工具,分別降低圓葉菸草 (Nicotiana benthamiana L.) 體内ODC及ADC的表現,並進一步利用MeJ誘導植物累積polyamine,從分析結果推測MeJ主要透過ODC的途徑生成腐胺 (putrescine)。由於ODC的反應物為鳥胺酸,鳥胺酸亦可用於脯胺酸 (proline) 的合成,將TMV-ODC分別處理29%聚乙二醇 (polyethylene glycol, PEG) 及0.1 mM離層酸 (abscisic acid, ABA),結果顯示在29% PEG處理下,ODC的表現受到抑制有助於提供更多的鳥胺酸供脯胺酸合成,但離層酸的處理則不會,因而確認OAT (ornithine-δ-aminotransferase) 僅參與滲透逆境誘導脯胺酸累積的角色。
The T7 promoter-driven Tobacco mosaic virus (TMV) infectious clone was currently practiced in our lab. The disadvantages of this system are the cumbersome procedure, expensive chemicals and the easily degraded RNA, which affect the stability of the experiments. In this thesis, we constructed the full-length cDNAs of TMV into Ti-plasmid and successfully established an in vivo system of TMV infectious clone. Polyamines (PAs) are low molecular weight, aliphatic polycations found in the cells of all living organisms. Polyamines could be synthesized with ornithine decarboxylase (ODC) from ornithine and with arginine decarboxylase (ADC) from arginine in plants. The result of real-time RT-PCR implicated that methyl jasmonate could induce the expression of ODC gene, but its mechanism is still unclear. The aim of this thesis is to use TMV infectious clone as a virus-induced gene silencing tool to lower the activities of ODC and ADC in Nicotiana benthamiana L. and further use methyl jasmonate to induce the accumulation of PAs. Results showed that ODC is a major enzyme for putrescine accumulation when methyl jasmonate is applied. The fact that ornithine can be used for the synthesis of PAs via ODC and for the synthesis of proline via ornithine-δ-aminotransferase (OAT) provides a system for the investigation of the crosstalk between ODC and OAT. Leaf discs containing TMV-ODC were treated with 29% PEG or 0.1 mM abscisic acid (ABA). Results showed that the ODC activity was inhibited when treated with 29% PEG resulting in the accumulation of higher proline level via OAT, but no significant difference was observed when treated with 0.1 mM ABA. Thus, the role of OAT participating only in the osmotic stress-induced proline accumulation was confirmed.
其他識別: U0005-2208201316093900
Appears in Collections:農藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.