Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3731
DC FieldValueLanguage
dc.contributor林智汶zh_TW
dc.contributor賴世明zh_TW
dc.contributor.advisor孫幸宜zh_TW
dc.contributor.author王天佑zh_TW
dc.contributor.authorWang, Tien-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T05:32:39Z-
dc.date.available2014-06-06T05:32:39Z-
dc.identifierU0005-1108200913204000zh_TW
dc.identifier.citation[1] I. Rodrıguez, M.P. Llompart, and R. Cela, Solid-phase extraction of phenols, J. Chromatogr. A, 885, 291, 2000. [2] M.-C. Hennion, Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography, J. Chromatogr. A, 823, 147, 1998. [3] C.E. Werkhoven-Goewie, U.A.Th. Brinkman, and R.W. Frei, Trace enrichment of polar compounds on chemically bonded and carbonaceous sorbents and application to chlorophenol Anal. Chem., 53, 2072, 1981. [4] J. Gawdzik, B. Gawdzik, and U. Czerwinska-Bil, A new porous polymer for off-line preconcentration of chlorophenols from water, Chromatographia, 25, 504, 1998. [5] G. Achilli, G.P. Cellerino, G. Melzi d’Eril, and S. Bird, Simultaneous determination of 27 phenols and herbicides in water by high-performance liquid chromatography with multielectrode electrochemical detection, J. Chromatogr. A, 697, 357, 1995. [6] P. D. Martin, G. R. Jones, F. Stringer, and I. D. Wilson, Comparison of normal and reversed-phase solid phase extraction methods for extraction of b-blockers from plasma using molecularly imprinted polymers, Analyst, 128, 345, 2003. [7] L. Renberg, Ion exchange technique for the determination of chlorinated phenos and phenoxy acids in organic tissue, soil, and water, Anal. Chem., 46, 459, 1974. [8] C.D. Chriswell, R.C. Chang, and J.S. Fritz, Chromatographic determination of phenols in water, Anal. Chem., 47, 1325, 1975. [9] J.X. Shen, R.J. Motyka, J. P. Roach, and R.N. Hayes, Minimization of ion suppression in LC–MS/MS analysis through the application of strong cation exchange solid-phase extraction (SCX-SPE), J. Pharm. Biomed. Anal., 37, 359, 2005. [10] P. Martin, I. D. Wilson, D. E. Morgan, G. R. Jones and K. Jones,Evaluation of a molecular-imprinted polymer for use in the solid phase extraction of propranolol from biological fluids, Anal. Comm., 34, 45, 1997. [11] C. Yu, M. H. Davey, F. Svec, and J. M. J. Fre´chet, Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device Anal. Chem., 73, 5088, 2001. [12] A.D. Corcia, S. Marchese, and R. Samperi, Evaluation of graphitized carbon black as a selective adsorbent for extracting acidic organic compounds from water, J. Chromatogr. A, 642, 163, 1993. [13] A.D. Corcia, S. Marchese, and R. Samperi, Selective determination of phenols in water by a two-trap tandem extraction system followed by liquid chromatography, J. Chromatogr. A, 642, 175, 1993. [14] A.D. Corcia, A. Bellini, and M.D. Madbouly, S. Marchese, Trace determination of phenols in natural waters extraction by a new graphitized carbon black cartridge followed by liquid chromatography and re-analysis after phenol derivatization, J. Chromatogr. A ,733, 383, 1996. [15] T. Saitoh, T. Kondo, and M. Hiraide, Concentration of chlorophenols in water to dialkyated catinonic surfactant–silica gel admicelles, J. Chromatogr. A, 1164, 40, 2007. [16] L. Lunar, S. Rubio, and D. Pe´rez-Bendito, Analysis of linear alkylbenzene sulfonate homologues in environmental water samples by mixed admicelle-based extraction and liquid chromatography/mass spectrometry, Analyst, 131, 835, 2006. [17] A. M. H. Shabani, S. Dadfarnia, F. Motavaselian, and S. H. Ahmadi, Separation and preconcentration of cadmium ions using octadecyl silica membrane disks modified by methyltrioctylammonium chloride, J. Hazard. Mater., 162, 373, 2009. [18] A. Garcı´a-Prieto, L. Lunar, S.Rubio, and D. Pe´rez-Bendito, Hemimicelle-based solid-phase extraction of estrogens from environmental water samples, Analyst, 131, 407, 2006. [19] F. Merino, S. Rubio, and D. Pe´ rez-Bendito, Solid-phase extraction of amphiphiles based on mixed hemimicelle/admicelle formation: application to the concentration of benzalkonium surfactants in sewage and river water, Anal. Chem., 75 , 6799, 2003. [20] A. Moral, M.D. Sicilia, S. Rubio, and D. P´erez-Bendito, Determination of bisphenols in sewage based on supramolecular solid-phase extraction/liquid chromatography/fluorimetry, J. Chromatogr. A, 1100, 8, 2005. [21] T. Saitoh, S. Matsushima, M. Hiraide, Aerosol-OT–γ-alumina admicelles for the concentration of hydrophobic organic compounds in water, J. Chromatogr. A, 1040, 185, 2004. [22] M. Ghaedi, K. Niknam, A. Shokrollahi, E. Niknam, H.R. Rajabi, and M. Soylak, Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina, J. Hazard. Mater., 155, 121, 2008. [23] K. Farhadi, N. Abdollahnezhad, R. Maleki, Separation and preconcentration of uranium(VI) from aqueous samples using a surfactant-coated alumina modified with meloxicam, Intern. J. Environ. Anal. Chem. 88, 725, 2008. [24] J.M. Ranck, J.L. Weeber, G.Tan, E.J. Sullivan, L.E. Katz, and R.S. Bowman, Removal of BTEX from produce waters using surfactant-modified zeolite, J. Environ. Eng., 131, 434, 2005. [25] Z. Li, Chromate Extraction from Surfactant-Modified Zeolite Surfaces, J. Environ. Qual., 27, 240, 1998. [26] S.C. Bouffard, and S.J.B. Duff, Uptake of dehydroabietic acid using organically-tailored zeolites, Wat. Res., 34, 2469, 2000. [27] Y.-C. Chen, and M.-F. Tsai, Sensitivity enhancement for nitrophenols using cationic surfactant-modified activated carbon for solid-phase extraction surface-assisted laser desorption/ionization mass spectrometry, Rapid Commun. Mass Spectrom. 14, 2300, 2000. [28] H. Niu, Y. Cai, Y. Shi, F. Wei, S. Mou, and G. Jiang, Cetyltrimethylammonium bromide-coated titanate nanotubes for solid-phase extraction of phthalate esters from natural waters prior to high-performance liquid chromatography analysis, J. Chromatogr. A, 1172, 113, 2007. [29] S. Yapar, V. Ozbudak, and A. Dias, A. LopesEffect of adsorbent concentration to the adsorption of phenol on hexadecyl trimethyl ammonium-bentonite, J. Hazard. Mater., B121, 135, 2005. [30] J. Li, X. Zhao, Y. Shi, Y. Cai, S. Mou, and G. Jiang, Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography/spectrophotometry detection, J. Chromatogr. A, 1180, 24, 2008. [31] W.S. Winston, and K.K. SirKar, Membrane handbook, Van Nostrand Reinhold, New York, 1992. [32] F. Akbal, Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant, J Environ Manage., 74, 239, 2005. [33]郭文正,曾添文,薄膜分離,高立圖書館,台北,台灣,1988。 [34]洪世明,使用固定有離子型界面活性劑之離子交換薄膜進行疏水物質吸附/脫附之研究,國立中興大學化學工程研究所,台中,台灣,2006。 [35]趙承琛,界面活性劑探原,科學月刊,金台灣資訊事業有限公司.圖龍文化事業股份有限公司,台北,台灣,1973。 [36] J.R. Hall, J.R. Florance, D. L. Strother, and M.N. Wass, EPA method study 12 604-phenols, United States Environmental Protection Agency, 1984. [37] K. Eder, M.R. Buchmeiser, and G.K. Bonn, New cation-exchange resins with high reversed-phase character for solid-phase extraction of phenols, J. Chromatogr. A, 810, 43, 1998. [38] N. Li, and H.K. Lee, Trace enrichment of phenolic compounds from aqueous samples by dynamic ion-exchange solid-phase extraction, Anal. Chem., 69, 5193, 1997. [39] J.R. Dean, W.R. Tomlinson, V. Makovskaya, R. Cumming, M. Hetheridge, M. Comber, Solid phase chemiluminescence detection reactors based on in situ polymerized methacrylate materials, Anal. Chem., 68 ,130, 1996. [40]長春人造樹脂廠(股)公司大發二廠,Phenol 物質安全資料表,高雄,台灣,2009。 [41] “Ambient Water Quality Criteria for Nitrophenols.” U.S. Environmental Protection Agency, 1980. http://www.epa.gov/waterscience/criteria/ library/ambientwqc/nitrophenols80.pdf. [42] Q.-Z. Feng, L.-X. Zhao, W. Yan, J.-M. Lin, and Z.-X. Zheng, Molecularly imprinted solid-phase extraction combined with high performanceliquid chromatography for analysis of phenolic compounds from environmental water samples, J. Hazard. Mater. doi:10.1016/j.jhazmat.2008.12.115, 2009. [43] “Ambient Water Quality Criteria for Chlorinated Phenols.” U.S. Environmental Protection Agency, http://www.epa.gov/waterscience/criteria/library/ ambientwqc/chlorinatedphenols80.pdf., 1980. [44]黃壬瑰,環境荷爾蒙-雙酚A,環檢新知43期,行政院環保署環境檢驗所,桃園,台灣,2002。 [45]賴麗瑩,談環境荷爾蒙,環檢新知22期,行政院環保署管考處,台北,台灣,1999。 [46] A. Szymański, I. Rykowska, and W. Wasiak, Determination of bisphenol a in water and milk by micellar liquid chromatography, Acta Chromatographica, 17, 161, 2006. [47]李永清,環境樣品固相萃取技術,財團法人中興工程顧問社,台北,台灣,2000。 [48] G.-L. Chen, S.-Y. Suen, S. Vied, K. Pickering, C. Perrin and E.D. Conte, Dihexadecyldimethylammonium hydroxide admicelles on silica for the preconcentration of selected phenols, Analyst, 134, 331, 2009. [49]徐照強,使用固定陽離子界面活性劑之陽離子交換薄膜進行酚萃取之研究,碩士論文,中興大學化學工程研究所,台中,台灣,2007。 [50] C.A. Staples, P.B. Dom, G.M. Klecka, S.T. O’Blook, and L.R Harris,A review of the environmental fate, effects, and exposures of bisphenol A, Chemosphere,36, 2149, 1998. [51]R.-S. Zhao, X. Wang, J.-P. Yuan, and L.-L. Zhang, Solid phase extraction of bisphenol A, nonylphenol and 4-octylphenol from environmental water samples using miroporous bamboo charcoal, and their determination by HPLC, Microchim Acta, 165, 443, 2009.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3731-
dc.description.abstract本研究使用十八烷基四級銨陽離子型界面活性劑,固定於兩種強陽離子交換薄膜(P及S)上,將離子型薄膜改質成疏水性薄膜,應用於酚類化合物的固相萃取上。由元素分析(EA)的結果顯示:前處理方法上使十八烷基四級銨的對立離子Cl-置換成OH-(或者OCH3-)能夠有效提升十八烷基四級銨的固定率。此外在固定溶液體積為20 mL下改變不同界面活性劑(C18-OH或C18-OCH3)之進料莫耳數分別為150 μmol、2000 μmol、5000 μmol,其界面活性劑的固定百分比(界面活性劑固定量除以薄膜離子交換含量)分別為< 100 %、= 100 %,以及> 100 %的固定率。在phenol,4-nitrophenol,4-chloro-3-methylphenol以及bisphenol A疏水性探討中:bisphenol A(log Kow = 3.32) > 4-chloro-3-methylphenol(log Kow = 3.10) > 4-nitrophenol(log Kow = 1.90) > phenol(log Kow = 1.50);而在界面活性劑固定率為100 %的薄膜上,對不同進料濃度的酚類吸附結果證明吸附如同疏水性強弱一樣為:bisphenol A > 4-chloro-3-methylphenol > 4-nitrophenol > phenol,證明酚類化合物是藉由疏水作用力(凡得瓦爾力)吸附在薄膜上。此外,固相萃取實驗則使用100 mL的1ppm之bisphenol A作為進料,探討改質後薄膜對其之吸附率,並以異丙醇進行脫附實驗,可達到全部脫附,且具有濃縮之效果。zh_TW
dc.description.abstractIn this study, cationic octadecyltrimethylammonium surfactant was immobilized onto a strong cation exchange membrane (P and S membrane) to form a hydrophobic membrane for application in the solid phase extraction (SPE) of phenolic compounds. The results indicate that the surfactant counter ion OH- (or OCH3-) could greatly improve the surfactant immobilization performance. Through elemental analysis (EA), the resulted surfactant immobilization percentage (immobilized surfactant amount divided by membrane ion exchange capacity) was <100 % for the feed amount of 150 μmol of octadecyltrimethylammonium oxide (or methoxide), 100 % for 5000μmol, and >100 % for 2000μmol respectively. (V = 20 mL). Phenol, 4-nitrophenol, 4-chloro-3-methylphenol and bisphenol-A were the test analytes and their order of hydrophobicity is bisphenol A (log Kow = 3.32) > 4-chloro-3-methylphenol (log Kow = 3.10) > 4-nitrophenol (log Kow = 1.90) > phenol (log Kow = 1.50). The adsorption of different feed concentrations of phenolic compounds for the membranes with 100 % surfactant immobilization demonstrated an adsorption order of bisphenol A > 4-chloro-3-methylphenol > 4-nitrophenol > phenol, similar to their hydrophobic power. Further more, 100mL bisphenol A (of an initial concentration of 1ppm) was also applied in SPE. A concentrated bisphenol A which was fully recovered could be achieved in the SPE when isopropanol was used.en_US
dc.description.tableofcontents目錄 誌謝…………………………………………………………………i 中文摘要………………………………………………………………ii 英文摘要………………………………………………………………iii 目錄………………………………………………………………iv 表目錄……………………………………………………………………vi 圖目錄…………………………………………………………vii 第一章、前言………………………………………………………1 1-1研究背景……………………………………………………………1 1-2研究目的…………………………………………………………2 第二章、文獻回顧………………………………………………………3 2-1離子交換膜……………………………………………………3 2-2界面活性劑…………………………………………………………3 2-2-1基本構造………………………………………………………3 2-2-2界面活性劑之分類…………………………………………4 2-2-3界面活性劑溶液之性質……………………………………5 2-3酚類化合物之簡介…………………………………………… 6 2-3-1酚……………………………………………………………6 2-3-2硝基酚……………………………………………………………6 2-3-3氯酚…..……………………………………………………7 2-3-4雙酚A…………………………………………………………7 2-4 固相萃取…………………………………………………………8 第三章、實驗方法……………………………………………………10 3-1材料與實驗藥品………………………………………………10 3-2分析儀器.……………………………………………………10 3-3實驗步驟…………………………………………………………11 3-3-1陽離子交換薄膜的離子交換容量實驗……………………11 3-3-2使用Ag2O改質C18-Cl為C18-OH 或 C18-OCH3……………12 3-3-3不同對立離子C18界面活性劑固定於陽離子交換薄膜實驗……12 3-3-4檢驗陽離子界面活性劑是否已固定於陽離子交換薄膜之方法.12 3-3-5已固定碳十八四級銨薄膜對酚類化合物之吸附實驗…………13 3-3-6批次固相萃取實驗………………………………………………13 第四章、結果與討論…………………………………………………15 4-1陽離子交換薄膜離子交換容量…………………………………15 4-2直鏈C18陽離子界面活性劑固定於陽離子交換薄膜之實驗……15 4-2-1不同對立離子之界面活性劑固定於陽離子交換薄膜實驗結果.15 4-2-2以不同濃度的C18-OH(或C18-OCH3)溶液固定陽離子交換薄膜.15 4-3酚類化合物之比較…………………………………………………16 4-4已固定碳十八四級銨薄膜對酚類化合物之吸附實驗……………16 4-5 Bisphenol A 進料體積的影響……………………………………17 4-6批次固相萃取實驗之結果……………………………………17 第五章、結論……………………………………………………………18 參考文獻…………………………………………………………………31 表目錄 表一、半微胞(hemicelles)與固微胞(admicelles)法進行前濃縮處理之相關文獻.19 表二、美國環境保護署優先管制之11種酚類化合物…………………21 表三、所使用酚類化合物之基本性質…………………………………22 表四、批次固相萃取實驗結果…………………………………………23 圖目錄 圖一、酚類化合物之結構圖…………………………………………24 圖二、界面活性劑不同對立離子對固定量的影響…………………25 圖三、薄膜固定界面活性劑前後之ATR光譜圖……………………26 圖四、不同界面活性劑進料量對薄膜固定量及固定率之影響……27 圖五、固定後薄膜對酚類化合物的吸附平衡曲線…………………28 圖六、酚類化合物進料濃度的影響結果……………………………29 圖七、Bisphenol A進料體積的影響結果…………………………30zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200913204000en_US
dc.subjectcation exchange membraneen_US
dc.subject陽離子交換薄膜zh_TW
dc.subjectsurfactanten_US
dc.subjectphenolic compoundsen_US
dc.subjectsolid phase extractionen_US
dc.subject界面活性劑zh_TW
dc.subject酚類化合物zh_TW
dc.subject固相萃取zh_TW
dc.title固定十八烷基四級銨之陽離子交換薄膜於酚類固相萃取之應用zh_TW
dc.titleSolid phase extraction of phenolic compounds with trimethylstearylammonium-immobilized cation exchange membranesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.